• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, May 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Preventing metastasis by stopping cancer cells from making fat

Bioengineer by Bioengineer
January 23, 2020
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: copy University of Louvain

Olivier Feron, a researcher at the University of Louvain (UCLouvain) Institute of Experimental and Clinical Research, seeks to understand how metastases form from a tumour. He already demonstrated that the most aggressive cancer cells use significant amounts of lipids as energy sources. Now Prof. Feron has discovered that cancer cells store lipids in small intracellular vesicles called ‘lipid droplets’. Cancer cells loaded with lipids are more invasive and therefore more likely to form metastases. Prof. Feron and his team sought to identify the link between lipid storage and metastatisation.

They identified a factor called TGF-beta2 as the switch responsible for both lipid storage and the aggressive nature of cancer cells. Moreover, it appeared that the two processes were mutually reinforcing. In fact, by accumulating lipids, more precisely fatty acids, cancer cells build up energy reserves, which they can then use as needed throughout their metastatic course.

Already known was that the acidity found in tumours promotes cancer cells’ invasion of healthy tissue. The process requires the detachment of the cancer cell from its original anchor site and the ability to survive under such conditions (which are fatal to healthy cells).

The new finding: UCLouvain researchers demonstrated that this acidity promotes, via the same TGF-beta2 ‘switch’, the invasive potential and formation of lipid droplets. These provide the invasive cells with the energy they need to move around and withstand the harsh conditions encountered during the metastatisation process. It’s like a mountaineer who takes the food and equipment necessary to reach the summit in spite of complex weather conditions.

Concretely, this UCLouvain research opens up new therapeutic avenues thanks to the discovery of the different actors involved in metastasis. These actors can thus be targeted and combated. Prof. Feron and his team show that it is possible to reduce tumour invasiveness and prevent metastases using specific inhibitors of TGF-beta2 expression but also compounds capable of blocking the transport of fatty acids or the formation of triglycerides. Among the latter are new drugs that are being evaluated to treat obesity. Their indications could therefore be rapidly extended to counter the development of metastases, which is the major cause of death among cancer patients.

The findings are published in the prestigious scientific journal Nature Communications. The research was carried out with funding from the Belgian Cancer Foundation, the Belgian National Fund for Scientific Research, the Télévie telethon, and a Wallonia Brussels Federation joint research grant (ARC).

###

Media Contact
Isabelle Decoster
[email protected]
321-047-8870

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-14262-3

Tags: cancerCell BiologyMedicine/HealthPharmaceutical SciencePublic Health
Share13Tweet8Share2ShareShareShare2

Related Posts

View of the Falcon 9 rocket launch from a park in Ventura County

“Here Comes the Boom: Investigating the Impact of Rocket Launch Sonic Booms on Nearby Communities #ASA188”

May 19, 2025
Gamma-Ray Energy Tracking Array

New Data Streaming Software Pursues Light-Speed Transfer from Accelerator to Supercomputer

May 19, 2025

Wiley Expands KnowItAll Libraries with New Raman Data on Microplastics, Biopolymers, Polymers, Monomers, and Minerals

May 19, 2025

Unveiling Hidden Laws: Rice University Researchers Use Magnetic Particles to Detect Invisible Edge Currents

May 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    666 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    90 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Dose Furmonertinib Targets EGFR Exon 20 Insertions

Breast Cancer Genetics in African and South Asian Women

Oncologists’ Challenges Treating Puerto Rican Hispanics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.