• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pressure-regulated excitonic feature enhances photocurrent of all-inorganic 2D perovski

Bioengineer by Bioengineer
March 3, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Xujie Lü

HPSTAR scientists Dr. Songhao Guo and Dr. Xujie Lü report three orders of magnitude increase in the photoconductivity of Cs2PbI2Cl2 from its initial value, at the industrially achievable level of 2 GPa, using pressure regulation. Impressively, pressure regulating the 2D perovskite’s excitonic features gains it 3D compound characteristics without diminishing its own advantages, making it a more promising material for photovoltaic and photodetector applications. Their study is published as a Cover article in the latest issue of the Journal of the American Chemical Society.

Two-dimensional (2D) halide perovskites have recently emerged for photovoltaic and optoelectronic applications due to their unique and tunable properties as well as high stability. Despite substantial development progress on developing these materials, how structural regulation affects their excitonic features, which govern their optoelectronic properties, has been unknown until now.

Comprehensive in situ experimental characterization and first-principles calculations reveal that lattice compression effectively regulates the excitonic features of Cs2PbI2Cl2, reducing the exciton binding energy from 133 meV at ambient conditions to 78 meV at 2 GPa. Notably, this reduced exciton binding energy of the 2D perovskite is comparable to typical 3D halide perovskites’ values, facilitating the dissociation of photo-excited excitons into free carriers and thus, enhancing the photoconductivity. Further pressurization leads to a layer-sliding-induced phase transition and an anomalous negative-linear compression, which has never been observed in other halide perovskites.

This work reveals the pressure-enhanced photocurrents in 2D halide perovskite for the first time and provides deeper insights into the relationship between their excitonic features and optoelectronic properties, furthering our understanding of their fundamental mechanisms.

###

More information: “Enhanced Photocurrent of All-Inorganic Two-Dimensional Perovskite Cs2PbI2Cl2 via Pressure-Regulated Excitonic Features”, Songhao Guo et al., J. Am. Chem. Soc., doi.org/10.1021/jacs.0c11730 (2021).

Media Contact
Haini Dong
[email protected]

Original Source

http://hpstar.ac.cn/

Related Journal Article

http://dx.doi.org/10.1021/jacs.0c11730

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterials
Share13Tweet8Share2ShareShareShare2

Related Posts

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Chemically Tuning Quantum Spin–Electric Coupling in Magnets

Chemically Tuning Quantum Spin–Electric Coupling in Magnets

August 27, 2025

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Patient and Physician Perspectives on Evolocumab Use

Organ Preservation: Who Accesses the Data?

Prioritizing Student Mental Health: Key Insights from BMES

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.