• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, October 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Predicting early cancers with molecular vibration in serum

Bioengineer by Bioengineer
July 25, 2023
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cancer, a leading cause of death worldwide is typically diagnosed at an advanced stage when survival rates are low. Most early-stage cancers are asympotmatic, and tranditional methods such as imaging or histopathological testing are not feasible as routine screening tests for the general population due to high cost and other clinical constraints. While several surface-enhanced Raman scattering (SERS)-based cancer detection methods have been developed to boast high sensitivity and selectivity, they tend to focus on a single or just a few biomarkers, and often only for a narrow range of cancer types, hampered by an insufficient sample size. Moreover, many researches remain at the preliminary stagesm lacking data that us easy to interpret and failing to leverage more efficient high-throughput analysis methods.

SERS-AICS characterization of five cancers with high mortality.

Credit: by Shilian Dong, Dong He, Qian Zhang, Chaoning Huang, Zhiheng Hu, Chenyang Zhang, Lei Nie, Kun Wang, Wei Luo, Jing Yu, Bin Tian, Wei Wu, Xu Chen, Fubing Wang, Jing Hu and Xiangheng Xiao

Cancer, a leading cause of death worldwide is typically diagnosed at an advanced stage when survival rates are low. Most early-stage cancers are asympotmatic, and tranditional methods such as imaging or histopathological testing are not feasible as routine screening tests for the general population due to high cost and other clinical constraints. While several surface-enhanced Raman scattering (SERS)-based cancer detection methods have been developed to boast high sensitivity and selectivity, they tend to focus on a single or just a few biomarkers, and often only for a narrow range of cancer types, hampered by an insufficient sample size. Moreover, many researches remain at the preliminary stagesm lacking data that us easy to interpret and failing to leverage more efficient high-throughput analysis methods.

In a new paper published in eLight, a team of scientists, led by Professor Xiangheng Xiao from College of Physical Sciences, Wuhan University, have taken a significant leap foward by developing a lable-free SERS-Artificial intelligence method for cancer screening (SERS-AICS). This technology ingeniously merges the detection strengths of traditional SERS system with the analytical power of advanced big data tool. The team tested as little as 15ul of patient serum samples with Ag nanowires each for lung, colorectal, hepatic, gastric, and esophageal cancers, capturing the subtle changes in vibrational signals of molecules in cancer samples due to their altered physiology and pathology. The researchers then trianed and validated their predictive workflow to recognize cancer by analyzing molecular vibrational spetrum from two independent cohorts involving 382 healthy individuals and 1,582 cancer patients. The system demonstrated impressive efficay with an accuracy of 95.81%, a sensitivity of 95.40% and a specificity of 95.87% overall for five cancer types. Additionally, it was successful in distinguishing samples at an early stage of cancer from those with common diseases, while facilitating the creation of a data platform for more in-depth analysis.

“This was very promising, as early-stage screening should detect changes in molecular fingerprinting information that are intermediate between healthy and disease states,” said Prof. Xiao. “And what’s truly exciting is that it isn’t restricted to one or a just handful biomarkers, but expand to encompass an all-inclusive ‘panoramic’ view for every single alternative signals in cancers.”

“Our study demonstrates the potential for developing a sentive tool for the early detection of various cancers,” Xiao said. “The predictive technique can identify individuals potentienlly harboring cancer from their blood sample obtained in routine heanlthy exam. Anyone with suspicious findings would then be referred further evaluation by definitive diagnosis.”

In future work, the researchers plan to analyze the spectrum of molecular vibration associated with various clinial characteristics of caner to gain a comprehensive understanding of the disease, potentially aiding in selecting targted therapies. They also aim to broaden the application of the SERS-AICS method to detect a wider range of cancers and other diseases, promising a transformative step forward in early-state cancer detection and patient monitoring.



Journal

eLight

DOI

10.1186/s43593-023-00051-5

Share12Tweet8Share2ShareShareShare2

Related Posts

New polyion complex for CAR T-cell therapy.

Hairy polymer balls help get genetic blueprints inside T-cells for blood cancer therapy

September 30, 2023
Kaylie Cullison

True progression or pseudoprogression in glioblastoma patients?

September 29, 2023

University of Cincinnati radiation oncology experts present at national conference

September 29, 2023

Research Highlights for September 2023

September 29, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

Next-generation printing: precise and direct, using optical vortices

Researchers studied thousands of fertility attempts hoping to improve IVF

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In