• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Predicting breast cancer recurrences

Bioengineer by Bioengineer
December 3, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Howard R. Petty

A new tool combining traditional pathology with machine learning could predict which breast cancer patients actually need surgery. The technology, reported in the November issue of American Journal of Physiology — Cell Physiology (vol. 319: C910-C921; https://doi.org/10.1152/ajpcell.00280.2020), could spare women from unnecessary treatments, reduce medical expenses, and lead to a new generation of drugs to stop breast cancer recurrences.

Ductal carcinoma in situ (DCIS) of the breast, an early form of disease also known as stage 0 breast cancer, is a diagnosis that only sometimes leads to invasive breast cancer. But only some patients need surgery, chemotherapy and/or radiotherapy, and the rest could be sent home. Predicting the outcomes of patients with early forms of cancer has been a major scientific problem for decades.

Professor Howard Petty and Ms. Alexandra Kraft, his research assistant, both of the University of Michigan, have just reported a solution to this diagnostic dilemma. The new technology was tested on DCIS patient samples donated to research over 10 years ago supplemented by their current clinical histories.

“Typically, patients with pre-invasive cancers, such as DCIS, are treated very aggressively,” says Prof. Petty. “In the case of DCIS, this means partial or total mastectomies…but we know from other work that more than half of these patients will not experience invasive disease.”

The method relies upon the newly reported discovery that, in both DCIS cases that are destined to recur and metastatic breast cancer, cells reorganize certain enzymes into “metabolic platforms” just beneath the outer membrane of these dangerous tumor cells. “This allows the enzymes to operate with high efficiencies, like an assembly line at a factory,” Prof. Petty says. That efficiency is what makes those cancers so dangerous. Petty theorizes that the enzyme products produced by these cellular factories promote tumor cell invasiveness and simultaneously deflect many forms of chemotherapy and radiotherapy.

To predict which DCIS cases lead to such assembly lines, Petty and colleagues tag biomarkers within patient samples then photograph the biomarkers with a sophisticated camera – similar to those used in astronomy. The digital images are then uploaded into a cloud computing platform for analysis.

Using this approach, the researchers correctly predicted cancer recurrences and non-recurrences 91% of the time, with only 4% false negatives. Further improvements are on the way.

The authors suggest that this tool will reduce the overdiagnosis of life-threatening DCIS. The technique may allow scientists to pharmaceutically disrupt metabolic platforms, thereby blocking tumor invasiveness, enhancing chemotherapy and radiotherapy, and stopping recurrences. “This tool may also be useful in predicting the outcomes of other pre-invasive lesions and in predicting which patients will respond to specific therapeutic interventions,” Prof. Petty says.

The researchers are presently performing the additional retrospective experiments needed to obtain FDA approval of this new diagnostic test.

###

This work has recently received the American Physiological Society’s APSselect Award.

Contact: [email protected]

Media Contact
Vanessa Denha-Garmo
[email protected]

Related Journal Article

http://dx.doi.org/10.1152/ajpcell.00280.2020

Tags: BiochemistryBiomechanics/BiophysicsBreast CancerCell BiologyMedicine/HealthRobotry/Artificial Intelligence
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Twisted Bilayer MOFs Unlock Tailored Moiré Patterns, Driving Breakthroughs in Twistronics and Quantum Materials

August 13, 2025
blank

How About Your Coffee Fortified with Iron?

August 13, 2025

In-Mouth Hydrogel Delivers Artificial Saliva for Effective Dry Mouth Relief

August 13, 2025

Unlock the Power of Cannabis Leaves: A Hidden Treasure of Rare Compounds

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Author Correction: New Analysis Clarifies Parkinson’s Trial Benefits

Optimizing Fuel Cell Parameters with AI Techniques

DKMS John Hansen Research Grant 2026 Awards Nearly €1 Million to Advance Innovative Blood Cancer Therapies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.