• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 19, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Playing wind instruments generates less aerosol than vocalization, COVID-19 study finds

Bioengineer by Bioengineer
June 29, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Bristol

Aerosol generated by playing woodwind and brass instruments is less than that produced when vocalising (speaking and singing) and is no different than a person breathing, new research has found. The findings, published online in the journal Aerosol Science and Technology, could be crucial to developing a roadmap for lifting COVID-19 restrictions in the performing arts, which have been significantly restricted since the start of the pandemic.

The research project, known as PERFORM (ParticulatE Respiratory Matter to InForm Guidance for the Safe Distancing of PerfOrmeRs in a COVID-19 PandeMic), was supported by Public Health England, the Department for Digital, Culture, Media and Sport (DCMS), and UKRI and was carried out by a collaborative team from Imperial College London, University of Bristol, Wexham Park Hospital, Lewisham and Greenwich NHS Trust and Royal Brompton Hospital.

The study looked at the amount of aerosols and droplets generated when playing woodwind and brass instruments compared with breathing and vocalisation (speaking and singing). The work was carried out in an environment with no background aerosol particles to complicate measurement interpretation, with nine musicians playing 13 woodwind and brass instruments.

The research team found aerosol (

Large droplets (>20 μm diameter) were not observed during instrument playing but were observed during singing and coughing. Together the findings indicate that playing woodwind and brass instruments generates less aerosol than vocalising at high volume levels.

Concentrations of aerosol emissions from the musicians during breathing and vocalising were consistent with results from a study carried out last year of a large group of professional singers. No difference was found between the aerosol concentrations generated by professional and amateur performers while breathing or vocalising, suggesting aerosol generation is consistent across amateur and professional singers regardless of vocal training.

Dr Bryan Bzdek, Lecturer in the School of Chemistry at the University of Bristol and corresponding author on the paper, said: “Our study found playing woodwind and brass instruments generates less aerosol than vocalisation, which could have important policy implications in a roadmap to lifting COVID-19 restrictions, as many performing arts activities have been, and continue to be, severely restricted.”

Jonathan Reid, Director of Bristol Aerosol Research Centre and Professor of Physical Chemistry in the School of Chemistry at the University of Bristol, added: “This study confirms that the risks of transmission of SARS-CoV-2 are likely elevated during vocalisation at loud volume in poorly ventilated spaces. By comparison, playing wind instruments, like breathing, generates less particles that could carry the virus than speaking or singing.”

###

Paper

‘Aerosol and droplet generation from performing with woodwind and brass instruments’ by Jonathan P. Reid, Pallav L. Shah, and Bryan R. Bzdek et al. in Aerosol Science and Technology

Media Contact
Joanne Fryer
[email protected]

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Crystal structure of TbMn6Sn6

A breakthrough in magnetic materials research could lead to novel ways to manipulate electron flow with much less energy loss

August 18, 2022
Light in Soybean Canopy

RIPE researchers prove bioengineering better photosynthesis increases yields in food crops for the first time ever

August 18, 2022

Engineers fabricate a chip-free, wireless electronic “skin”

August 18, 2022

Exploring quantum electron highways with laser light

August 18, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    57 shares
    Share 23 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Chi-Huey Wong awarded Tetrahedron Prize for Creativity in Organic Synthesis

    38 shares
    Share 15 Tweet 10
  • Dogs lying in the middle of the road after sunrise at Kewa Pueblo, in no hurry to start the day

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesUniversity of WashingtonUrogenital SystemVirologyVehiclesWeather/StormsWeaponryViolence/CriminalsVirusVaccineZoology/Veterinary ScienceUrbanization

Recent Posts

  • Early blood tests predict death, severe disability for traumatic brain injury
  • Obscure gastrointestinal bleeding: rebleeding rates and rebleeding predictors found
  • Collaborations inspired early-career NIH grant that could lead to treatment breakthroughs for a range of medical conditions
  • Novel hypotheses that answer key questions about the evolution of sexual reproduction
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In