• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Platelet doppelgängers tackle thrombosis and cancer metastasis

Bioengineer by Bioengineer
February 13, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Anne-Laure Papa and colleagues have created decoys of platelets – the body’s clot-forming blood cells – that prevented the formation of dangerous blood clots in vessels (or thrombosis) and combated cancer metastasis in preclinical models. Their decoys – whose effects can be reversed far faster compared to standard antiplatelet drugs – represent a promising therapeutic strategy for treating thrombosis and cancer metastasis, two leading causes of death and disability worldwide. Platelets play a vital role in the human circulatory system, as they protect the body from bleeding and maintain the integrity of blood vessels. However, hyperactive platelets also contribute to an array of diseases – patients with thrombosis often have elevated platelet counts, which can also promote the spread of malignant cancer cells. Currently available antiplatelet drugs can inhibit platelet activation, but reversal of the effects they exert requires at least one week, making them risky for patients who have suffered a trauma or other life-threatening situations. To overcome this obstacle, Papa et al. created a rapidly reversible antiplatelet therapy inspired by platelet “decoys.” The decoys did not aggregate and became activated in the same manner as normal platelets but maintained their ability to interact with other cells. They also inhibited harmful adhesion and aggregation of functional platelets and reduced the severity of thrombosis in a rabbit model. Importantly their effects were immediately reversed with an injection of fresh, functional platelets. They also displayed wide-ranging anticancer effects – the decoys broke up platelet-mediated aggregation of human breast cancer cells, prevented their spread in a chip model of the human vasculature, and inhibited metastatic tumor growth in mice. The fast reversibility of the therapy indicates it could one day prevent life-threatening bleeding in clinical emergencies or surgical settings, the authors say.

###

Media Contact
202-326-6440
[email protected]
http://dx.doi.org/10.1126/scitranslmed.aau5898

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Overcoming Real-World Challenges in Neoadjuvant Rectal Cancer Treatment

January 10, 2026

Smart AI Platform Revolutionizes Lung Cancer Consultations

January 10, 2026

Advancements in Leptomeningeal Metastasis Treatment for NSCLC

January 9, 2026

GRIm Score Predicts Nivolumab Efficacy in Melanoma

January 9, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Overcoming Real-World Challenges in Neoadjuvant Rectal Cancer Treatment

Exploring Tuina’s Role in Treating Torticollis in Children

Nanoagent Targets HER2 for Cancer Antibody Delivery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.