• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, December 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Plants as antifungal factories

Bioengineer by Bioengineer
December 10, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The results of this research published in the Plant Biotechnology Journal could impact the pharmaceutical and agri-food industries

IMAGE

Credit: CRAG


Researchers from the Spanish Research Council (CSIC) at the Centre for Research in Agricultural Genomics (CRAG) and the Institute for Plant Molecular and Cellular Biology (IBMCP), in collaboration with the IATA, have developed a biotechnological tool to produce, in a very efficient manner, antifungal proteins in plants. The results of this research, that could impact the agri-food and pharmaceutical sectors, have been published this week in the Plant Biotechnology Journal.

Disease-causing fungi that infect plants, animals and humans pose a serious threat to human and animal health, food security and ecosystem resilience. More people die every year from fungal infections than from malaria. Furthermore, fungal infections can have fatal consequences for at-risk immunocompromised patients with HIV/AIDS and organ transplantation, among others. In addition, fungi are a challenge to food security because they destroy major crops globally and contaminate food and feed with mycotoxins that are detrimental to animal and human health.

New antifungals

Maria Coca, researcher at CRAG and one of the senior authors of the study, explains that “only a few classes of antifungal agents are available today, and even these are not fully effective due to the development of resistance, host toxicity, and undesirable side effects. Many of these compounds do not even comply with the regulations, and therefore they cannot be used. Thus, there is an urgent need to develop novel antifungals, whose properties and mechanisms of action represent improvements on the existing ones, and which can be applied in diverse fields, including crop and postharvest protection, preservation in cosmetics, materials and food, and animal and human health.” Coca’s research group, in collaboration with the IATA’s researcher Jose F. Marcos, aims to develop new antifungal compounds based on the antifungal proteins (AFPs) secreted by filamentous fungi. The problem is that the synthesis of these compounds is extremely complex; hence their exploitation requires efficient, sustainable and safe production systems.

A virus at the service of biotechnology

The CSIC researcher at the IBMCP José Antonio Daros is an expert in viruses that infect plants. Through genetic engineering, Daros and his team in Valencia managed to modify the tobacco mosaic virus (TMV) so that, instead of producing its own pathogenic proteins, it produced other proteins of interest. In Barcelona, the team led by Maria Coca implemented this tool to produce antifungal proteins in leaves of the Nicotiana benthamiana plant -a plant from the tobacco family widely used in research- discovering that these leaves produced large quantities of these new antifungals.

In addition, the researchers demonstrated that extracts recovered from the N. benthamiana plants are active against pathogenic fungi, being able to protect the tomato plant from the infection by the fungus Botrytis cinerea, better known as grey mould.

The work of the CRAG, IBMCP and IATA researchers shows that the plants can be used as biofactories of antifungal proteins for commercial purposes.

###

Media Contact
Zoila Babot
[email protected]
34-609-088-368

Related Journal Article

http://dx.doi.org/10.1111/PBI.13038

News source: https://scienmag.com/

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyFertilizers/Pest ManagementFood/Food SciencePharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Raging Fires

Wildfires have erased two decades’ worth of air quality gains in western United States

December 5, 2023
Study Exhibit #1

Health Affairs’ December Issue: Global Lessons From COVID-19

December 4, 2023

Immune protein may induce dementia unrelated to high blood pressure

December 4, 2023

Eating disorder hospitalizations on the rise, affecting ‘atypical’ groups the most

December 4, 2023
Please login to join discussion

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9
  • UMass Amherst receives $2.5 million from Howard Hughes Medical Institute to reshape STEM education

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New implants linked to less infection and better recovery from orthopedic surgery

Recycling concrete using carbon can reduce emissions and waste

Powerful financial giants could play vital role in preventing the next pandemic

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In