• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Planetary ball-milling helps protect our planet from plastics pollution

Bioengineer by Bioengineer
August 27, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Osaka University have developed eco-friendly polymer materials with extended functional lifespans that are self-healing, tough and recyclable, by innovatively using a planetary ball mixing method

IMAGE

Credit: Osaka University

Osaka, Japan – Plastics are ubiquitous in modern life; unfortunately, once they lose function, they pollute the environment. Now, researchers at Osaka University have developed polymer materials that combine self-healing with strength and recyclability that could extend the functional lifetimes of manufactured plastics, thus minimizing the surging problem of discarded remnants.

Polymers are versatile substances, composed of many repeating molecular subunits, with essential and diverse functions in biological processes and industry. Sadly, their durability is double-edged: waste plastics generate litter and can contaminate our environment for centuries. About 50 kg of plastics is produced annually for every human; this doubles every decade. By the year 2050, there may be more plastics in our oceans than fish. As plastics are indispensable, extending their functional life by enhancing durability, self-healing and recyclability can help reduce waste.

Host-guest interactions, a fascinating branch of supramolecular chemistry, describes molecular complexes held in unique structural relationships by non-covalent bonding. These physical linkages allow molecular recognition and are ideal for preparing materials with rapidly reversible properties.

“We prepared supramolecular materials by mixing host and guest polymers of acetylated β-cyclodextrin and adamantane,” explains Junsu Park, lead author. “We compared three mixing methods: conventional casting, planetary kneading and ball-milling. Ball-milling employs zirconia balls in a zirconia grinding jar on a sun-wheel revolving eccentrically in reverse. The additional rotational forces on the grinding surfaces and the interplay between impact and friction cause nanoscale mixing.”

The researchers analyzed the polymers by wounding, re-joining, as coating of a glass substrate and after repeated ball-milling. Using dynamic mechanical analysis, thermal property measurements, small angle X-ray scattering measurements, and confocal laser scanning microscopy, etc they assessed scratch resistance, deformability and tensile strength.

The results were remarkable. Planetary mixing efficiently produced tough, self-healable, and recyclable supramolecular materials. Surface scratches disappeared in seconds and fractured fragments united in minutes. Moreover, mechanical properties were preserved even after repeated milling. “Ball-milling disentangles the polymer chains in the materials and increases their mobility while facilitating their re-formation,” Park explains. “This maintains the number of host-guest interactions, ensuring both self-healing and toughness.”

Senior author Yoshinori Takashima describes the potential of these discoveries: “We can develop tough materials capable of self-repair that retain these properties even when recycled. Prolonging their functional lifespan is key to saving the environment as they are being increasingly deployed in manufacture. Additionally, their unique biomimetic properties open up avenues of application in fields such as artificial skin for prostheses, robots and even vehicles.”

###

The article, “Extremely rapid self-healable and recyclable supramolecular materials through planetary ball milling and host-guest Interactions,” was published in Advanced Materials at https://onlinelibrary.wiley.com/doi/10.1002/adma.202002008

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan’s leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan’s most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/adma.202002008

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMolecular PhysicsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of RISE Program on Contraceptive Equity in Uganda

November 5, 2025
blank

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

November 5, 2025

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of RISE Program on Contraceptive Equity in Uganda

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.