• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 15, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pizza can help address the dark matter mystery?

Bioengineer by Bioengineer
December 11, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A cavity partitioned into multiple identical cells provides a highly efficient path to high-frequency axion dark matter searches

IMAGE

Credit: IBS

Despite its vanishingly tiny mass, the existence of the axion, once proven, may point to new physics beyond the Standard Model. Born to explain a fundamental symmetry problem in the strong nuclear force associated with the matter-antimatter imbalance in our Universe, this hypothetical particle also makes an attractive dark matter candidate. Though axions would exist in vast enough numbers to be able to account for the “missing” mass from the Universe, the search for this dark matter has been quite challenging so far.

Scientists believe that when an axion interacts with a magnetic field, its energy would be converted into a photon. The resulting photon is expected to be somewhere in the microwave-frequency range. Hoping to hit the right match for the axion, experimentalists use a microwave detector, a cavity haloscope. Having a cylindrical resonator placed in a solenoid, the magnetic field filling the cavity enhances the signal. The haloscope also allows scientists to continually adjust the resonant frequency of the cavity. However, the most sensitive axion-search experiment, the Axion Dark Matter eXperiment (ADMX) at the University of Washington has been searching low frequency regions, below 1 GHz, as scanning higher frequency regions requires a smaller cavity radius, resulting in significant volume loss and hence less signal. (Figure 1-?)

A research team, led by Dr. YOUN SungWoo at the Center for Axion and Precision Physics Research (CAPP) within the Institute for Basic Science (IBS) in South Korea, has developed a novel multiple-cell cavity design, dubbed “pizza cavity”. Just like pizzas are cut into several slices, multiple partitions vertically divide the cavity volume into identical pieces (cells). With almost no volume to be lost, this multiple-cell haloscope enables the meaningful output of high-frequency region scanning. (Figure 1-?). Though there were endeavors to bundle smaller cavities together and combine individual signals with all the cavities tuned at the same frequency, its complicated setup and non-trivial frequency matching mechanism have been bottlenecks. (Figure 1-?). “The pizza cavity haloscope features a simpler detector setup and a unique phase-matching mechanism as well as a larger detection volume compared to the conventional multi-cavity design,” notes Dr. YOUN SungWoo, the corresponding author of the study.

The researchers proved that the multiple-cell cavity was able to detect high-frequency signals with improved efficiency and reliability. In an experiment using a 9T-superconducting magnet at a temperature of 2 kelvin (?271 °C), the team quickly scanned a frequency range of > 200 MHz above 3 GHz, which is 4~5 times higher region than that of ADMX yielding higher sensitivity to theoretical models than the previous results made by other experiments. Also this new cavity design enabled the researchers to explore a given frequency range four times faster than a conventional experiment could. “Getting things done four times faster.” Dr. Youn jokingly adds, “Using this multiple-cell cavity design, our Ph.D. students should be able to graduate faster than those in other labs.”

What makes this multiple-cell design simple to operate is the gap between partitions in the middle. Having all of the cells spatially connected, a single antenna picks up the signal from the entire volume. “As a pizza saver keeps pizza slices intact with its original toppings, the gap in between helps the cells to be up to the job,” says Dr. Youn. The single antenna also allows researchers to assess whether the axion-induced electromagnetic fields are evenly distributed throughout the cavity, which is found to be critical to achieve the maximum effective volume. “Still, the inaccuracy and misalignment in cavity construction could hamper the sensitivity. For that, this multiple-cell design enables to relieve it by adjusting the size of the gap in the middle, leaving no volume to go to waste,” explains Dr. Youn.

The two-year extensive efforts of the research team resulted in an optimal design for long-sought search of axion dark matter in high-frequency regions. The team is looking into incorporating several multiple-cell cavities onto the existing systems at CAPP to extend the axion search band to higher-frequency regions than currently explored.

###

Media Contact
Dr. Sung Woo Youn
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.125.221302

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021
IMAGE

Nanodiamonds feel the heat

January 15, 2021

Controlling chemical catalysts with sculpted light

January 15, 2021

Researchers trace geologic origins of Gulf of Mexico ‘super basin’ success

January 15, 2021
Next Post
IMAGE

Flavors added to vaping devices can damage the heart

IMAGE

Researchers find why 'lab-made' proteins have unusually high temperature stability

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

cancerGeneticsClimate ChangeChemistry/Physics/Materials SciencesPublic HealthTechnology/Engineering/Computer ScienceBiologyMaterialsInfectious/Emerging DiseasesCell BiologyEcology/EnvironmentMedicine/Health

Recent Posts

  • Howard University professor to receive first Joseph A. Johnson Award
  • Nanodiamonds feel the heat
  • Special interests can be assets for youth with autism
  • Controlling chemical catalysts with sculpted light
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In