• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pitt engineer Sangyeop Lee receives $500K NSF CAREER Award

Bioengineer by Bioengineer
December 4, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Lee will use machine learning to improve energy performance of semiconductors and insulators

IMAGE

Credit: University of Pittsburgh Swanson School of Engineering


PITTSBURGH (Dec. 4, 2019) — Developing materials with ultrahigh or ultralow thermal conductivity along a certain direction can enable new energy storage and conversion devices. However, grain boundaries – two-dimensional defects in crystal structures – exist in polycrystalline material and significantly affect thermal transport. Addressing the defects is currently not efficient – observing and experimenting with grain boundaries when creating materials can prove to be a lengthy and costly process. However, machine learning may provide a more sustainable alternative.

Sangyeop Lee, PhD, assistant professor of mechanical engineering and materials science, received a $500,000 CAREER Award from the National Science Foundation (NSF) for research that would utilize machine learning to model thermal transport in polycrystalline materials. The research seeks to create a computer model that can predict the conductive properties of a material in real life, providing guidance to engineer defects for desired thermal properties.

“Thermal transport across grain boundaries is not well understood. Studying heat as it transfers across a material at the atomistic scale means observing how atoms vibrate,” explains Lee. “In real materials, atoms are disordered and it has been extremely challenging to predict how atoms vibrate in disordered structures from first-principles. However, machine learning can help us gain a quantitative understanding of thermal transport that can help us predict how a material will behave.”

The improved understanding of thermal transfer across grain boundaries will enable engineers to create materials that convert heat to electricity more efficiently, for example, or better manage heat in electronic devices.

The project, titled “Machine Learning Enabled Study of Thermal Transport in Polycrystalline Materials from First Principles,” will begin on July 1, 2020.

###

Media Contact
Maggie Pavlick
[email protected]
412-383-0449

Original Source

https://www.engineering.pitt.edu/News/2019/Sangyeop-Lee-CAREER-Award/

Tags: Electrical Engineering/ElectronicsMechanical EngineeringResearch/DevelopmentSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025
Co-electroreduction of CO and Glyoxal Yields C3 Products

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Empowering Self-Advocacy in Young Adults with Disabilities

Micron-Scale Fiber Mapping Without Sample Prep

CRISPR Screen Uncovers Novel Regulator of Androgen Receptor in Prostate Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.