• Scienmag
  • Contcat Us
Sunday, December 15, 2019
BIOENGINEER.ORG
No Result
View All Result
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Physicists have found a way to ‘hear’ dark matter

Bioengineer by Bioengineer
October 9, 2019
in Chemistry
0

IMAGE

Credit: Illustration: Alexander Millar/Stockholm University


Physicists at Stockholm University and the Max Planck Institute for Physics have turned to plasmas in a proposal that could revolutionise the search for the elusive dark matter.

Dark matter is a mysterious substance that makes up 85% of the matter in the universe. Originally introduced to explain why the Strong Force (which holds together protons and neutrons) is the same backwards and forwards in time, the so called axion would provide a natural explanation for dark matter. Rather than discrete particles, axion dark matter would form a pervasive wave flowing throughout space.

The axion is one of the best explanations for dark matter but has only recently been the focus of large scale experimental effort. Due to this renaissance there has been a rush to come up with new ideas for how to look for the axion in all the areas where it could be hiding.

“Finding the axion is a bit like tuning a radio: you have to tune your antenna until you pick up the right frequency. Rather than music, experimentalists would be rewarded with ‘hearing’ the dark matter that the Earth is travelling through. Despite being well motivated, axions have been experimentally neglected during the three decades since they were named by coauthor Frank Wilczek,” says Dr. Alexander Millar, Postdoctor at the Department of Physics, Stockholm University, and author of the study.

The key insight of the research team’s new study is that inside a magnetic field axions would generate a small electric field that could be used to drive oscillations in the plasma. A plasma is a material where charged particles, such as electrons, can flow freely as a fluid. These oscillations amplify the signal, leading to a better “axion radio”. Unlike traditional experiments based on resonant cavities, there is almost no limit on how large these plasmas can be, thus giving a larger signal. The difference is somewhat like the difference between a walkie talkie and a radio broadcast tower.

“Without the cold plasma, axions cannot efficiently convert into light. The plasma plays a dual role, both creating an environment which allows for efficient conversion, and providing a resonant plasmon to collect the energy of the converted dark matter”, says Dr. Matthew Lawson, Postdoctor at the Department of Physics, Stockholm University, also author of the study.

“This is totally a new way to look for dark matter, and will help us search for one of the strongest dark matter candidates in areas that are just completely unexplored. Building a tuneable plasma would allow us to make much larger experiments than traditional techniques, giving much stronger signals at high frequencies”, says Dr. Alexander Millar.

To tune this “axion radio” the authors propose using something called a “wire metamaterial”, a system of wires thinner than hair that can be moved to change the characteristic frequency of the plasma. Inside a large, powerful magnet, similar to those used in Magnetic Resonance Imaging machines in hospitals, a wire metamaterial turns into a very sensitive axion radio.

Searching for dark matter with plasmas will not remain just an interesting idea. In close collaboration with the researchers, an experimental group at Berkeley has been doing research and development on the concept with the intent of building such an experiment in the near future.

“Plasma haloscopes are one of the few ideas that could search for axions in this parameter space. The fact that the experimental community has latched onto this idea so quickly is very exciting and promising for building a full scale experiment”, says Dr. Alexander Millar.

###

More information:

The article “Tunable Axion Plasma Haloscopes” is published in the scientific journal Physical Review Letters:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.141802

Contact:

Matthew Lawson, Postdoctor at the Department of Physics, Stockholm University

Mobile Phone: +46 722 97 42 64

E-mail: [email protected]

Alexander Millar, Postdoctor at the Department of Physics, Stockholm University

Mobile Phone: +46 76 845 87 09

E-mail: [email protected]

Media Contact
Stockholm University Press Office
[email protected]
46-081-64090

Original Source

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.141802

Tags: AstronomyAstrophysicsAtomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesParticle PhysicsPlanets/Moons

Related Posts

IMAGE
Chemistry

Following the lizard lung labyrinth

by Bioengineer
December 13, 2019
IMAGE
Chemistry

Growing carbon nanotubes with the right twist

by Bioengineer
December 13, 2019
IMAGE
Chemistry

Nanoscience breakthrough: Probing particles smaller than a billionth of a meter

by Bioengineer
December 13, 2019

POPULAR NEWS

  • IMAGE

    What felled the great Assyrian Empire? A Yale professor weighs in

    0 shares
    Share 0 Tweet 0
  • Scientists discover how the molecule-sorting station in our cells is formed and maintained

    0 shares
    Share 0 Tweet 0
  • Nearly extreme black holes which attempt to regrow hair become bald again

    0 shares
    Share 0 Tweet 0
  • Early DNA lineages shed light on the diverse origins of the contemporary population

    0 shares
    Share 0 Tweet 0
  • ‘Are we alone?’ Study refines which exoplanets are potentially habitable

    0 shares
    Share 0 Tweet 0
ADVERTISEMENT

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent Posts

  • Dartmouth study finds conscious visual perception occurs outside the visual system
  • Mitochondria are the ‘canary in the coal mine’ for cellular stress
  • Grant project aims to improve food security for remote indigenous populations in Australia
  • Following the lizard lung labyrinth

Tags

Aging Agriculture Atmospheric Science Behavior Biochemistry Biodiversity Biology Biomedical/Environmental/Chemical Engineering Biotechnology cancer Cardiology Cell Biology Chemistry/Physics/Materials Sciences Climate Change Clinical Trials Computer Science Earth Science Ecology/Environment Electrical Engineering/Electronics Evolution Genes Genetics Health Care Health Care Systems/Services Health Professionals Immunology/Allergies/Asthma Infectious/Emerging Diseases Marine/Freshwater Biology Materials Medicine/Health Mental Health Microbiology Molecular Biology Nanotechnology/Micromachines neurobiology Nutrition/Nutrients Pediatrics Pharmaceutical Science Physiology Plant Sciences Public Health Research/Development Social/Behavioral Science Technology/Engineering/Computer Science Zoology/Veterinary Science
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Login to your account below

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In