• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Physicists document method to improve magnetoelectric response

Bioengineer by Bioengineer
June 16, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The discovery could lead to faster and cheaper data storage, better sensors and other advances in electronics

IMAGE

Credit: Photo provided

FAYETTEVILLE, Ark. – University of Arkansas physicists have documented a means of improving the magnetoelectric response of bismuth ferrite, a discovery that could lead to advances in data storage, sensors and actuators.

Bismuth ferrite, or BFO, has long been of interest to scientists because its functional properties can be controlled by applying external stimuli; its magnetic response can be controlled via electric field, and its electrical response can be controlled via magnetic field, hence the name magnetoelectric. BFO is of particular interest because it is one of few magnetoelectric materials functional at room temperature. A limiting factor, however, is the small magnetoelectric response. Enhancing that response would increase the material’s usefulness.

U of A scientists devised a means of improving the response by simulating a situation in which a mix of three quasiparticles creates a new quasiparticle they called “electroacoustic magnons.”

“This mechanism provides opportunities to engineer the size and shape of the material to reach strikingly larger magnetoelectric responses,” said doctoral candidate Sayed Omid Sayedaghaee, first author of a paper published in the journal Nature Partner Journal Computational Materials. Physics researchers Charles Paillard and Bin Xu, along with research professor Sergey Prosandeev and Distinguished Professor Laurent Bellaiche contributed to the study.

The researchers used supercomputers at the Arkansas High Performance Computing Center to create a model that explains the electroacoustic magnons and also explains the dynamics of magnetoelectric effects. Their study was supported by grants from the Defense Advanced Research Projects Agency and the Army Research Office.

###

Media Contact
Bob Whitby
[email protected]

Original Source

https://wordpressua.uark.edu/research-frontiers/physicists-document-method-to-improve-magnetoelectric-response/

Related Journal Article

http://dx.doi.org/10.1038/s41524-020-0311-z

Tags: Chemistry/Physics/Materials SciencesElectromagneticsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

September 13, 2025

Adverse Events in Asian Adults on Brivaracetam

September 13, 2025

Tumor Microenvironment Dynamics in Breast Cancer Therapy

September 13, 2025

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

Adverse Events in Asian Adults on Brivaracetam

Tumor Microenvironment Dynamics in Breast Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.