• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, January 21, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Photonics meets surface science in a cheap and accurate sensor for biological liquids

Bioengineer by Bioengineer
December 3, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Timur Ermatov et al/Light: Science & Applications

Skoltech researchers and their colleagues from Russia and Israel have come up with a new, simple and inexpensive method of testing liquid biological samples that can be further developed to work in clinical settings, including real-time testing during surgery. The paper was published in the journal Light: Science & Applications.

The most common method of real-time diagnostic testing for biological samples (such as urine or saliva) that is used in the healthcare system, optical label-free sensors, are highly sensitive, but that sensitivity comes at a cost in terms of time and resources. Looking for a more efficient alternative, the research team, coordinated by Prof. Dmitry Gorin from the Center for Photonics and Quantum Materials at the Skolkovo Institute of Science and Technology (Skoltech) and Dr. Roman Noskov from Tel Aviv University, turned to the data that these sensors normally disregard: optical dispersion of the refractive index of a sample that can act as a fingerprint of sorts for tracking the changes in its composition.

They introduced the concept of in-fiber multispectral optical sensing (IMOS) for liquid biological samples in both static and real-time modes. According to the team, this sensing method is precise, reliable and very sensitive to impurities in the sample, which can make it useful both for diagnostic purposes and for real-time simulations of various biological processes.

Hollow-core microstructured optical fiber (HC-MOF), a particular kind of optical fibers which confine light inside a hollow core surrounded by microstructured cladding, is at the heart of the new sensing approach. Liquid goes through chambers in the fiber, and spectral shifts of maxima and minima in the transmission spectrum of HC-MOF are interpreted as signals about the chemical composition of the sample. With no need for an external cavity or interferometer, the sensing system is easy and inexpensive to produce.

The researchers tested its performance on the concentration of bovine serum albumin (BSA), which is commonly used in such experiments, dissolved in water and in a phosphate-buffered saline solution. The resolution they were able to show consistently in several experiments was equivalent to 1 gram of BSA in a liter of liquid, close to the accuracy of standard albumin tests and potentially meets clinical needs.

“Our concept can be considered a platform for intraoperative analysis of biomarkers of different types. For that, we need to test it on other bioanalytes and further modify the hollow core fiber to increase specificity. Future trials of these point-of-care devices will serve as the first step for realization of the true ‘bench-to-bedside’ approach,” Gorin notes.

“In-fiber multispectral optical sensing opens new horizons in fast, cheap, and reliable analysis of blood and other bodily liquids in real time that is important for timely diagnostics of various diseases and abnormal conditions,” Noskov adds.

The team plans to continue their research in increasing specificity as well as sensitivity of this approach. They are going to file a patent application and look for industrial partners and investors interested in developing clinical devices based on this type of sensors.

###

This work is a result of a collaboration between not only Skoltech and Tel Aviv university, but also other organizations, including Saratov State University, Moscow State University, Moscow Institute of Physics and Technology, Tomsk State University, RAS Institute of Precision Mechanics and Control, and Nanostructured Glass Technology, an industrial partner.

Media Contact
Ilyana Zolotareva
[email protected]

Original Source

https://www.skoltech.ru/en/2020/12/photonics-meets-surface-science-in-a-cheap-and-accurate-sensor-for-biological-liquids/

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00410-8

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesCritical Care/Emergency MedicineDiagnosticsHealth Care Systems/ServicesOpticsResearch/DevelopmentSurgery
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

New, simplified genetic test effectively screens for hereditary cancers

January 21, 2021
IMAGE

Having sustainability in mind: lithium from the Upper Rhine Graben for batteries

January 21, 2021

The interconnection of global pandemics — Obesity, impaired metabolic health and COVID-19

January 21, 2021

Turbulence model could help design aircraft capable of handling extreme scenarios

January 21, 2021
Next Post
IMAGE

How to cool more efficiently

IMAGE

Titanium atom that exists in two places at once in crystal to blame for unusual phenomenon

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    64 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyChemistry/Physics/Materials SciencesMaterialsGeneticsClimate ChangeCell BiologyInfectious/Emerging DiseasesEcology/EnvironmentcancerTechnology/Engineering/Computer ScienceMedicine/HealthPublic Health

Recent Posts

  • New, simplified genetic test effectively screens for hereditary cancers
  • Having sustainability in mind: lithium from the Upper Rhine Graben for batteries
  • The interconnection of global pandemics — Obesity, impaired metabolic health and COVID-19
  • Turbulence model could help design aircraft capable of handling extreme scenarios
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In