• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, February 6, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Phasecraft reveals a more efficient method for modelling electrons in materials

Bioengineer by Bioengineer
July 12, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UK quantum software startup Phasecraft, spun out of UCL and University of Bristol, releases peer-reviewed research that shows significant improvement beyond previous techniques for simulating fermions on quantum computers

IMAGE

Credit: Phasecraft Ltd

One of the most significant challenges in the global R&D effort towards better energy technologies — efficient and accurate material simulation — may be one step closer to being solved, based on new techniques released by UK-based quantum software startup Phasecraft.

The new peer-reviewed study in the Physical Review B journal from the American Physical Society sets out a novel technique for modelling fermionic particles — like electrons — which significantly reduces the quantum hardware resources needed to perform simulations.

Phasecraft’s Joel Klassen, who co-led the study, explained, “One of the most exciting potential applications for quantum computing is simulating physical systems like materials. Using new tools, like quantum computers, to develop a better understanding of how the natural world works has historically often led to dramatic technological breakthroughs. Our results reduce the resources required to perform these simulations, bringing this application closer to reality.”

“Many important fields such as Chemistry and Materials Science are concerned with the dynamics of fermion particles in physical systems – in the form of electrons. Fermions are notoriously difficult to simulate on regular computers so being able to simulate them efficiently on a quantum device would provide a faster path to tackling hard problems in these areas of research such as understanding high temperature superconductivity or improving chemical reaction efficiency,” commented Charles Derby, a Phasecraft team member and PhD candidate at UCL, who co-led the research.

“Our compact representation of fermions outperforms all previous representations improving memory use and algorithm size each by at least 25% – a significant step towards realising practical scientific applications on near-term quantum computers.”

Although quantum hardware has seen significant improvements in recent years, existing devices remain limited and prone to a buildup of errors, and a gap exists between what hardware can do and the resources software needs. The new modelling technique not only helps close this gap, but has the added benefit of being able to detect errors in the computation. The lead authors, along with their collaborators, Toby Cubitt and Johannes Bausch at Phasecraft, lay out how this additional feature could be used to help address these errors.

Building on these findings, Phasecraft is conducting small-scale experiments to demonstrate these resource improvements and error mitigation methods on quantum hardware, as well as working with established industry partners to explore how they may be applied to battery material simulation.

“Another compelling part of this new approach is the error detection and mitigation integrated into the fermion encoding, which are particularly important on near-term, noisy quantum hardware,’ explained Phasecraft consultant and research contributor Johannes Bausch.

Phasecraft co-founder and research contributor Toby Cubitt commented “At Phasecraft, we aim to speed up the timeline for quantum advantage. This new research continues our pioneering achievements for creating compact, resource-efficient, error-resilient software designed for the limited capacity of near-term quantum hardware. By developing these new techniques that are tuned to quantum hardware’s limitations, Phasecraft may enable potential breakthroughs in energy efficiency and storage, chemistry, and far beyond.”

###

This new research adds to previous research advances, including representing the Fermi-Hubbard model, also featured in the Physical Review B journal.

Citation: C. Derby, J. Klassen, J. Bausch, T. S. Cubitt, Compact Fermion To Qubit Encodings, Physical Review B, Vol. 104, Iss. 3 — 15 July 2021. http://www.doi.org/10.1103/PhysRevB.104.035118

Read the Phasecraft insight piece here: https://www.phasecraft.io/insight/quantum-simulations-of-fermionic-many-body-systems

Additional information on Phasecraft advances are online here: http://www.phasecraft.io/insight

About Phasecraft

Phasecraft is taking quantum theory from research to reality, faster. Phasecraft was founded in 2019 by Toby Cubitt, Ashley Montanaro, and John Morton, expert quantum scientists who have spent decades leading top research teams at UCL and the University of Bristol. Phasecraft collaborates with leading quantum hardware companies, including Google, IBM, and Rigetti, academic and industry leaders, to develop high-efficiency software that evolves quantum computing from experimental demonstrations to useful applications. Learn more: http://www.phasecraft.io

Media Contact
Katy Zack
[email protected]

Original Source

https://www.phasecraft.io/news/phasecraft-more-efficient-method-for-modelling-electrons-in-materials

Related Journal Article

http://dx.doi.org/10.1103/PhysRevB.104.035118

Tags: Algorithms/ModelsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesComputer ScienceMaterialsParticle PhysicsSoftware Engineering
Share13Tweet8Share2ShareShareShare2

Related Posts

$1.6M gift to Markey Cancer Center will establish endowed chair in gynecologic oncology

$1.6M gift to Markey Cancer Center will establish endowed chair in gynecologic oncology

February 6, 2023
Dr. Eduard Vasilevskis

VUMC’s ‘Shed-MEDS’ protocol can reduce risk of drug interactions in older people

February 6, 2023

Scientists pinpoint protein that helps cancer-causing viruses evade immune response

February 6, 2023

Seven new species of whitefish described in Central Switzerland

February 6, 2023
Please login to join discussion

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

$1.6M gift to Markey Cancer Center will establish endowed chair in gynecologic oncology

VUMC’s ‘Shed-MEDS’ protocol can reduce risk of drug interactions in older people

Scientists pinpoint protein that helps cancer-causing viruses evade immune response

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In