• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Pesticides speed the spread of deadly waterborne pathogens

Bioengineer by Bioengineer
July 17, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC Berkeley researchers show how agricultural chemicals can increase transmission of the schistosome parasite

IMAGE

Credit: Planetary Health Alliance photo by Hillary Duff

Berkeley — Widespread use of pesticides and other agrochemicals can speed the transmission of the debilitating disease schistosomiasis, while also upsetting the ecological balances in aquatic environments that prevent infections, finds a new study led by researchers at the University of California, Berkeley.

Schistosomiasis, also known as snail fever, is caused by parasitic worms that develop and multiply inside freshwater snails and is transmitted through contact with contaminated water. The infection, which can trigger lifelong liver and kidney damage, affects hundreds of millions of people every year and is second only to malaria among parasitic diseases, in terms of its global impact on human health.

The study, published in the journal Lancet Planetary Health, found that agrochemicals can increase the transmission of the schistosome worm in myriad ways: by directly affecting the survival of the waterborne parasite itself, by decimating aquatic predators that feed on the snails that carry the parasite and by altering the composition of algae in the water, which provides a major food source for snails.

“We know that dam construction and irrigation expansion increase schistosomiasis transmission in low-income settings by disrupting freshwater ecosystems,” said UC Berkeley’s Christopher Hoover, a doctoral student in environmental health sciences and lead author of the study. “We were shocked by the strength of evidence we found also linking agrochemical pollution to the amplification of schistosomiasis transmission.”

The findings come as the connections between environment and infectious disease have been laid bare by the COVID-19 pandemic, which is caused by an emerging pathogen thought to be linked to wildlife.

“Environmental pollutants can increase our exposure and susceptibility to infectious diseases,” said Justin Remais, chair of the Division of Environmental Health Sciences at the UC Berkeley School of Public Health and senior author of the study. “From dioxins decreasing resistance to influenza virus, to air pollutants increasing COVID-19 mortality, to arsenic impacting lower respiratory tract and enteric infections — research has shown that reducing pollution is an important way to protect populations from infectious diseases.”

After combing through nearly 1,000 studies gathered in a systematic literature review, the research team identified 144 experiments that provided data connecting agrochemical concentrations to components of the schistosome life cycle. They then incorporated these data into a mathematical model that captures the transmission dynamics of the parasite. The model simulates concentrations of common agrochemicals following their application to agricultural fields and estimates the resulting impacts on infections in the nearby human population.

The researchers found that even low concentrations of common pesticides — including atrazine, glyphosate and chlorpyrifos — can increase rates of transmission and interfere with efforts to control schistosomiasis. Agrochemical amplification of parasite transmission was not inconsequential. In the study communities in the Senegal River Basin in West Africa, the excess burden of disease attributable to agrochemical pollution was on par with disease caused by lead exposure, high sodium diets and low physical activity.

“We need to develop policies that protect public health by limiting the amplification of schistosomiasis transmission by agrochemical pollution,” Hoover said. “More than 90% of schistosomiasis cases occur in areas of sub-Saharan Africa, where agrochemical use is expanding. If we can devise ways to maintain the agricultural benefits of these chemicals, while limiting their overuse in schistosomiasis-endemic areas, we could prevent additional harm to public health within communities that already experience a high and unacceptable burden of disease.”

###

The research team included Samantha L Rumschlag and Jason R. Rohr of the University of Notre Dame; Luke Strgar of UC Berkeley; Arathi Arakala of the Royal Melbourne Institute of Technology University; Manoj Gambhir, formerly of Monash University, in Melbourne, Australia; and Giulio A. De Leo and Susanne H. Sokolow of Stanford University.

The study was supported by grants from the National Institute of Allergy and Infectious Diseases, the National Science Foundation and the National Institute of Health’s Fogarty International Center.

Media Contact
Kara Manke
[email protected]

Original Source

https://news.berkeley.edu/2020/07/17/pesticides-speed-the-spread-of-deadly-waterborne-pathogens/

Related Journal Article

http://dx.doi.org/10.1016/S2542-5196(20)30105-4

Tags: Disease in the Developing WorldEnvironmental HealthFertilizers/Pest ManagementMarine/Freshwater BiologyMedicine/HealthPollution/RemediationPublic HealthToxicology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

DFG Funds Enhanced Reliability in Evaluations of Statistical Methods

August 12, 2025
Glutamatergic Synapses Resist Human Alpha-Synuclein Overexpression

Glutamatergic Synapses Resist Human Alpha-Synuclein Overexpression

August 12, 2025

Advancing Cancer Care: The Promise of Antitumor mRNA-Based Vaccines in Personalized Treatment

August 12, 2025

Embryonic Factors Reverse ALS Damage in Motor Neurons

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BTI, Meiogenix, and FFAR Launch $2 Million Collaborative Project to Advance Tomato Genetics

DFG Funds Enhanced Reliability in Evaluations of Statistical Methods

Kennesaw State Physics Professor Awarded Three-Year Grant to Develop Particle Collider Simulations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.