• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures

Bioengineer by Bioengineer
May 18, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In modern photonic applications, such as the optical communications and AR/VR displays, on-demand multi-dimensional light control plays a crucial rule, including the modulation of wavelength, amplitude, phase, and polarization. Along with the miniaturization and integration of photonic technology, ultra-compact and multifunctional optical devices are highly desired. In terms of cost-efficient large-scale fabrication, high optical efficiency, and reliable dynamic light control, liquid crystal (LC) becomes a famous and strong “candidate”, whose success has been well verified in the display industry. As a typical LC mesophase, CLC is very attractive due to its self-assembled chiral superstructures, and has been found to possess reflective PB phase in 2016. Thus, it supplies a versatile platform for multi-functional and active light control. However, the single-handed chiral structure of CLC determines that it cannot manipulate light with opposite circular polarization simultaneously, let alone getting the conjugated PB phase.

Schematic illustration of common CLC superstructures and opposite-chirality-coexisted superstructures.

Credit: by Lin Zhu,Chun-Ting Xu,Peng Chen,Yi-Heng Zhang, Si-Jia Liu, Quan-Ming Chen, Shi-Jun Ge, Wei Hu, and Yan-Qing Lu

In modern photonic applications, such as the optical communications and AR/VR displays, on-demand multi-dimensional light control plays a crucial rule, including the modulation of wavelength, amplitude, phase, and polarization. Along with the miniaturization and integration of photonic technology, ultra-compact and multifunctional optical devices are highly desired. In terms of cost-efficient large-scale fabrication, high optical efficiency, and reliable dynamic light control, liquid crystal (LC) becomes a famous and strong “candidate”, whose success has been well verified in the display industry. As a typical LC mesophase, CLC is very attractive due to its self-assembled chiral superstructures, and has been found to possess reflective PB phase in 2016. Thus, it supplies a versatile platform for multi-functional and active light control. However, the single-handed chiral structure of CLC determines that it cannot manipulate light with opposite circular polarization simultaneously, let alone getting the conjugated PB phase.

 

In a new paper published in Light: Science & Applications, a team of scientists, led by Associate Professor Peng Chen and Professor Yan-Qing Lu from National Laboratory of Solid State Microstructures, and College of Engineering and Applied Sciences, Nanjing University, Nanjing, China, and co-workers have developed an innovative scheme based on opposite-chirality-coexisted superstructures. These scientists summarize the principle of their device:

 

“It comes to us whether it is possible to break the intrinsic single chirality of common CLCs. If somehow chiral superstructures with contrary handedness could be integrated into a single layer to form a uniformly-distributed and sub-wavelength local chirality heterogeneity, namely, the opposite-chirality-coexisted superstructures, light beams with orthogonal circular polarization and conjugated PB phase should be simultaneously reflected and superposed.” mentioned by Prof. Chen.

 

“Luckily, the CLC polymer networks reported in prior arts are compatible of media with different properties, and further guide our way. Practice makes perfect. To be honest, we were surprised to see that it worked so well in the light control. It is a powerful tool!” he added.

 

They have simultaneously modulated the orthogonal circular polarization and get PB phase reversal. Through refilling CLC into a washed-out polymer network with opposite chirality and delicate photo-patterned structures, reflective optical vortex (OV) with opposite topological charges and vector beams with conjugated spiral PB phases are efficiently generated depending on the incident polarization. Furthermore, they encoded OV holograms to reconstruct polarization-selective OV arrays.

 

It stands out for some important merits of ultra-compact configuration, exemption from careful alignment, and higher efficiency without multiple interfaces. This device breaks the limitation of traditional CLC devices and brings an important insight into the understanding of PB phase and polarization optics. “We believe it will facilitate the architectures and functionalities of soft chiral superstructures towards versatile elegant photonic devices.” Prof. Lu forecast.



Journal

Light Science & Applications

DOI

10.1038/s41377-022-00835-3

Article Publication Date

12-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

VX detecting protein

Ronald Koder-led CCNY team creates first ever VX neurotoxin detector

July 6, 2022
Kate C. Miller

UTA selects Kate C. Miller as new VP for research and innovation

July 6, 2022

Upside-down design expands wide-spectrum super-camera abilities

July 6, 2022

Citizen scientists from 200 years ago and today help shed light on climate change trends

July 6, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationVaccineWeather/StormsVirusWeaponryUrogenital SystemViolence/CriminalsVirologyVehiclesUniversity of WashingtonZoology/Veterinary ScienceVaccines

Recent Posts

  • Researchers rediscover oak tree thought to be extinct
  • Bees’ ‘waggle dance’ may revolutionize how robots talk to each other in disaster zones
  • Killing resistant prostate cancer with iron
  • Less sex during menopause transition not linked to sexual pain
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....