• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures

Bioengineer by Bioengineer
May 18, 2022
in Chemistry
Reading Time: 3 mins read
0
Schematic illustration of common CLC superstructures and opposite-chirality-coexisted superstructures.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In modern photonic applications, such as the optical communications and AR/VR displays, on-demand multi-dimensional light control plays a crucial rule, including the modulation of wavelength, amplitude, phase, and polarization. Along with the miniaturization and integration of photonic technology, ultra-compact and multifunctional optical devices are highly desired. In terms of cost-efficient large-scale fabrication, high optical efficiency, and reliable dynamic light control, liquid crystal (LC) becomes a famous and strong “candidate”, whose success has been well verified in the display industry. As a typical LC mesophase, CLC is very attractive due to its self-assembled chiral superstructures, and has been found to possess reflective PB phase in 2016. Thus, it supplies a versatile platform for multi-functional and active light control. However, the single-handed chiral structure of CLC determines that it cannot manipulate light with opposite circular polarization simultaneously, let alone getting the conjugated PB phase.

Schematic illustration of common CLC superstructures and opposite-chirality-coexisted superstructures.

Credit: by Lin Zhu,Chun-Ting Xu,Peng Chen,Yi-Heng Zhang, Si-Jia Liu, Quan-Ming Chen, Shi-Jun Ge, Wei Hu, and Yan-Qing Lu

In modern photonic applications, such as the optical communications and AR/VR displays, on-demand multi-dimensional light control plays a crucial rule, including the modulation of wavelength, amplitude, phase, and polarization. Along with the miniaturization and integration of photonic technology, ultra-compact and multifunctional optical devices are highly desired. In terms of cost-efficient large-scale fabrication, high optical efficiency, and reliable dynamic light control, liquid crystal (LC) becomes a famous and strong “candidate”, whose success has been well verified in the display industry. As a typical LC mesophase, CLC is very attractive due to its self-assembled chiral superstructures, and has been found to possess reflective PB phase in 2016. Thus, it supplies a versatile platform for multi-functional and active light control. However, the single-handed chiral structure of CLC determines that it cannot manipulate light with opposite circular polarization simultaneously, let alone getting the conjugated PB phase.

 

In a new paper published in Light: Science & Applications, a team of scientists, led by Associate Professor Peng Chen and Professor Yan-Qing Lu from National Laboratory of Solid State Microstructures, and College of Engineering and Applied Sciences, Nanjing University, Nanjing, China, and co-workers have developed an innovative scheme based on opposite-chirality-coexisted superstructures. These scientists summarize the principle of their device:

 

“It comes to us whether it is possible to break the intrinsic single chirality of common CLCs. If somehow chiral superstructures with contrary handedness could be integrated into a single layer to form a uniformly-distributed and sub-wavelength local chirality heterogeneity, namely, the opposite-chirality-coexisted superstructures, light beams with orthogonal circular polarization and conjugated PB phase should be simultaneously reflected and superposed.” mentioned by Prof. Chen.

 

“Luckily, the CLC polymer networks reported in prior arts are compatible of media with different properties, and further guide our way. Practice makes perfect. To be honest, we were surprised to see that it worked so well in the light control. It is a powerful tool!” he added.

 

They have simultaneously modulated the orthogonal circular polarization and get PB phase reversal. Through refilling CLC into a washed-out polymer network with opposite chirality and delicate photo-patterned structures, reflective optical vortex (OV) with opposite topological charges and vector beams with conjugated spiral PB phases are efficiently generated depending on the incident polarization. Furthermore, they encoded OV holograms to reconstruct polarization-selective OV arrays.

 

It stands out for some important merits of ultra-compact configuration, exemption from careful alignment, and higher efficiency without multiple interfaces. This device breaks the limitation of traditional CLC devices and brings an important insight into the understanding of PB phase and polarization optics. “We believe it will facilitate the architectures and functionalities of soft chiral superstructures towards versatile elegant photonic devices.” Prof. Lu forecast.



Journal

Light Science & Applications

DOI

10.1038/s41377-022-00835-3

Article Publication Date

12-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Atropisomeric Macrocyclic Peptides with Quinolines

September 17, 2025

3D-Printed Fuel Cells Set to Energize Future Aerospace Innovations

September 17, 2025

Atomic Magnetometers Usher in a New Era for Electromagnetic Induction Imaging

September 17, 2025

Researchers Develop First Prototype Battery Using Hydride Ions

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Cancer Treatment: The Role of Nanomaterials and the Tumor Microenvironment

New Insights into Immunotherapy Failure Offer New Hope for Cancer Patients

Parents’ Perspectives on Neonatal Transfer Process

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.