• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Outfitting T cell receptors to combat a widespread and sometimes deadly virus

Bioengineer by Bioengineer
February 22, 2019
in Health
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jennifer Maynard/Ellen Wagner/University of Texas


Researchers have engineered “antibody-like” T cell receptors that can specifically stick to cells infected with cytomegalovirus, or CMV, a virus that causes lifelong infection in more than half of all adults by age 40. These receptors represent a new potential treatment option, could aid the development of CMV vaccines and might also be used to target brain tumors.

In the healthy immune system, CMV lies dormant as T cells circulate through the body and detect infected cells. While antibodies recognize only proteins on the surface of cells, T cells use their membrane-bound T cell receptors, or TCRs, to detect disease-associated proteins hiding inside the cellular membrane. TCRs can then tell T cells to destroy the infected cell, which is normally the case with CMV. However, for immunocompromised patients, this defensive mechanism is greatly diminished and the virus can become life-threatening.

Researchers have used T cells to treat disease before, but engineering and transplanting whole T cells is both costly and invasive. In a new study published in the Journal of Biological Chemistry, a team of engineers took an alternative approach, producing CMV-detecting TCRs that, like antibodies, float freely through the body and bind tightly to their diseased targets.

“Right now we’ve got a molecule that looks like an antibody but it binds to a (CMV-associated) peptide that would normally be recognized by a TCR,” said Jennifer Maynard, a professor of chemical engineering at the University of Texas at Austin and senior author of the study. “Antibodies cannot normally access these molecules so that’s a big deal.”

To produce therapeutic biomolecules, researchers often use bacterial or yeast cells as miniature factories. However, those cell types have had minimal success in generating stable human TCRs. Because the receptors evolved in mammalian cells, the molecular machinery of foreign cell types often introduces defects, Maynard said. To provide the TCRs a more suitable environment, the authors used Chinese hamster ovary cells.

“These proteins are really difficult to work with, so we thought we’ll just keep them in the environment where they’re happy, and they’re happy on the surface of a mammalian cell,” Maynard said.

TCRs naturally create loose bonds with their targets but the authors wanted theirs to bind and not let go. To strengthen these connections, the authors randomly mutated the DNA of the TCR component that detects the CMV peptide. They then inserted many versions of the mutated DNA into hamster cells, which then manufactured about a million different types of TCR, Maynard said.

The researchers then measured which mutated version established the strongest bond by exposing the myriad TCR variations expressed on the surface of the hamster cells to the CMV peptide.

“We found one that was our favorite,” Maynard said. “We improved the binding affinity 50-fold.”

Then the challenge was to liberate the TCRs from the T cell membrane. To achieve this, the researchers further edited the DNA so that the TCRs would attach to the protein that composes the stem of “Y”-shaped antibodies. And to help these proteins hold their shape, they added a bond inside the TCR and also prevented any sugars from attaching. Altogether, these changes seemed to do the trick, Maynard said.

These “antibody-like” TCRs could be used to track disease progression in patients or to evaluate how well developing vaccines are working. These TCRs might also restore some of the lost immune response in immunocompromised patients by instructing their cells to attack CMV infections, Maynard said.

Another big opportunity for this new molecule is to treat glioblastoma. Although the brain tumors do not produce many distinct markers, they do suppress the immune system, which in CMV-infected patients can bring the virus back to life within the cancer cells, Maynard said.

“Our protein could be used to specifically target glioblastoma cells, and it would provide a very unique marker,” Maynard said. “We would use this to monitor or kill some of those tumor cells.”

###

This study was funded by the Welch Foundation, the Clayton Foundation, the National Institutes of Health, and the National Science Foundation.

Other authors on this study include Ellen K. Wagner, Ahlam N. Qerqez, Christopher A. Stevens, Annalee W. Nguyen, and George Delidakis.

About the Journal of Biological Chemistry:

JBC is a weekly peer-reviewed scientific journal that publishes research “motivated by biology, enabled by chemistry” across all areas of biochemistry and molecular biology. The read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry and Molecular Biology:

The ASBMB is a nonprofit scientific and educational organization with more than 11,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in government laboratories, at nonprofit research institutions and in industry. The Society publishes three journals: the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics. For more information about ASBMB, visit http://www.asbmb.org.

Media Contact
Jonathan Griffin
[email protected]
240-283-6616

Tags: BiochemistryBiologyBiomedical/Environmental/Chemical EngineeringcancerImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthMolecular BiologyVaccinesVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.