• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Order out of disorder in ice

Bioengineer by Bioengineer
June 24, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chuanlong Lin

The glass structure of a material is often believed to mimic its corresponding liquid. Polyamorphism between ices has been used as a guide to elucidate the properties of liquid water. But how many forms of amorphous ices are there? Do we understand how metastable high-pressure crystalline ice evolves towards the thermally stable low-density form? An international research team led by Chuanlong Lin and Wenge Yang from HPSTAR and John S. Tse from the University of Saskatchewan has revealed a multiple-step transformation mechanism using state-of-the-art time-resolved in situ synchrotron x-ray diffraction. A temperature/time-dependent kinetic pathway with three distinctive transitions was identified in the structural evolution from metastable crystalline ice (ice VII or ice VIII) to the thermodynamically stable ice I. These intermediate processes compete against each other. The end result is a juxtaposition of these processes. The work is published in PNAS.

Water plays a vital role in the origin of life on Earth. In the liquid phase, it exhibits many unusual properties. In the solid phase, ordinary ice also displays diverse phase transitions at high pressure. Many theoretical and experimental studies have been devoted to understanding the underlying inter-conversion mechanisms. So far, most experiments have been ex situ measurements on recovered samples and lack detailed information on the structural evolution accompanying the transformation. Previous studies have been hindered by technical difficulties in monitoring the rapid structural change over a broad pressure and temperature range.

In 2017, Lin and his colleagues overcame the experimental challenge. A series of studies was conducted to investigate ice transitions by combining in situ time-resolved x-ray diffraction, and remote pressure control with different ramp rates within a low-temperature cryostat. This capability allowed the suppression of thermally-driven crystalline-crystalline transitions [PNAS 115, 2010-2015(2018)]. Important insights into the complexity of the poly-amorphous transformations were obtained, such as the kinetically-controlled two-step amorphization in ice Ih [Phys. Rev. Lett. 119, 135701(2017)] and the successful venture into the no man’s land [Phys. Rev. Lett. 121, 225703(2018)].

Now, they try to answer what exactly is the nature of the amorphous-amorphous phase transformation processes? Using the newly developed techniques, they explored the “mirror” process, i.e., reverse transformation from a meta-stable high-density crystalline ice (i.e, ice VII or ice VIII) to the ambient stable ice I. They identified the temperature/time-dependent kinetic pathways and characterized the interplay/competition between the high density amorphous (HDA)-low density amorphous (LDA) transition and recrystallization. Contrary to previously reported ice VII (or ice VIII) — LDA — ice I transformation sequences, time-resolved measurements show a three-step process: initial transformation of ice VII to HDA, followed by a HDA — LDA transition, and then crystallization of LDA into ice I. Both the amorphization of ice VII and the HDA to LDA transition show distinctive thermal activation mechanisms. Significantly, both processes exhibit the Arrhenius behavior with a temperature-dependent duration time (τ) and a ‘transition’ temperature at around 110-115 K.

Large-scale molecular-dynamics calculations also support their experimental findings. Furthermore, it shows the HDA to LDA transformation is continuous with a large density difference and involves substantial displacements of water in the nano-scale. This study presents a new perspective on the metastability and complexities in shaping ice-transition kinetic pathways.

###

Media Contact
Haini Dong
[email protected]

Original Source

http://hpstar.ac.cn/contents/27/11420.html

Related Journal Article

http://dx.doi.org/10.1073/pnas.2007959117

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Caregiver Readiness for Pediatric Aspiration Emergencies

Culturally Tailored FIT Kit Navigation for Younger Adults

Retinal Imaging: A Window to Brain Health Insights

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.