• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Optical security: Tunable-resonator upconverted emission color printing

Bioengineer by Bioengineer
May 13, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SUTD

Viewing bank notes under ultraviolet or infra-red light is a common check for counterfeits. Doing so causes invisible inks to glow visibly and is one of the most tried and tested tricks in optical document security. Microprint is another technique used as an anti-counterfeiting tool. As the name suggests, microprints hide information on documents because they are too small for the eye to see. However, microprints and invisible inks often only exhibit a single color and are separate elements. Scientists from the Singapore University of Technology and Design (SUTD) have recently reported a plasmonic upconversion optical security device, which displays an ultrahigh resolution color print under white light while revealing different upconversion luminescent information under infrared illumination. The presented optical security devices have potential applications in deterring counterfeiting of important documents and packages of high-value medicines.

Principal researcher, SUTD Associate Professor Joel Yang, calls it “TRUE color printing”, where “TRUE” stands for “Tunable-Resonator Upconverted Emission”. A monolayer of upconversion nanophosphors (NaGdF4:Yb) were self-assembled within a 15 nm gap between aluminum disks and a continuous aluminum film. The strong electromagnetic fields confined within the metal-insulator-metal gap increases the brightness and of the nanophosphor emitters by two orders of magnitude. Interestingly, in this TRUE color printing, a range of luminescent colors were achieved with one type of upconversion nanophosphors under a single excitation source. Usually, doping with different lanthanide elements or employing multiple excitation lasers are required to achieve multiple luminescent colors. Instead, the interaction between these nanophosphors and their local environment causes them to shine with different colors.

Current optical security devices are mostly one dimensional and only display a set of encrypted information. While in TRUE color printing, both amplitude of the white light and upconversion luminescence are simultaneously employed to encode the information. It is recently well known that different sizes of plasmonic resonators reflect different colors under white light. Meanwhile, they will activate different energy transfer channels of upconversion nanophosphors under laser excitation, emitting different luminescent colors. Therefore, the white light colors and luminescent colors were both employed to design the optical security devices, which display a colored butterfly while revealing a luminescent butterfly. To increase the level of secrecy, upconversion emitters are precisely incorporated in specific positions, while leaving other places non-luminescent. A visible colorful butterfly was displayed under white light while a football and some English letters “UCNP” was recovered with laser illumination. The different display information under white light and laser source make TRUE color printing widely applicable in anti-counterfeiting such as passport, banknotes, and ID cards.

###

This study was recently published on Advanced Materials and was selected as the inside cover.

Media Contact
Melissa Koh
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/adma.201807900

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsOpticsResearch/DevelopmentTechnology/Engineering/Computer Science
Share14Tweet7Share2ShareShareShare1

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parental Stress in Neurodevelopmental Disorders: Key Factors Revealed

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.