• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Optical frequency combs found a new dimension

Bioengineer by Bioengineer
February 20, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: EPFL/Alexey Tikan

Periodic pulses of light forming a comb in the frequency domain are
widely used for sensing and ranging. The key to the miniaturisation of
this technology towards chip-integrated solutions is the generation of
dissipative solitons in ring-shaped microresonators. Dissipative solitons
are stable pulses circulating around the circumference of a nonlinear
resonator.

Since their first demonstration, the process of dissipative soliton
formation has been extensively studied and today it is rather
considered as textbook knowledge. Several directions of further
development are actively investigated by different research groups
worldwide. One of these directions is the generation of solitons in
coupled resonators. The collective effect of many resonators promises
better performance and control over the frequency combs, exploiting
another (spatial) dimension.

But how does the coupling of additional resonators change the soliton
generation process? Identical oscillators of any kind, affecting each
other, can no longer be considered as a set of distinct elements. Due to
the hybridisation phenomenon, the excitation of such a system
influences all its elements, and the system has to be treated as a whole.
The simplest case when the hybridisation takes place is two coupled
oscillators or, in molecular terminology, a dimer. As well as coupled
pendulums and atoms forming a molecule, modes of coupled optical
microresonators experience hybridisation but, in contrast to other
systems, the number of involved modes is large (typically from tens to
hundreds). Therefore, solitons in a photonic dimer are generated in
hybridised modes involving both resonators, which adds another
degree of control if one has access to hybridisation parameters.

In a paper published at Nature Physics, researchers from the laboratory of Tobias J. Kippenberg at EPFL, and IBM Research Europe led by Paul Seidler, demonstrated the generation of dissipative solitons and, therefore, coherent frequency combs in a photonic molecule made of two microresonators. The generation of a soliton in the dimer implies two counter-propagating solitons in both resonator rings. The
underlying electric field behind every mode of the dimer resembles two
gears turning in opposite directions, which is why solitons in the
photonic dimer are called Gear Solitons. Imprinting heaters on both
resonators, and thereby controlling the hybridisation, authors
demonstrated the real-time tuning of the soliton-based frequency
comb.

Even the simple dimer arrangement, besides the hybridised (gear)
soliton generation, has demonstrated a variety of emergent
phenomena, i.e. phenomena not present at the single-particle
(resonator) level. For instance, researchers predicted the effect of
soliton hopping: periodic energy exchange between the resonators forming the dimer while maintaining the solitonic state. This phenomenon is the result of simultaneous generation of solitons in both hybridised mode families whose interaction leads to energy oscillation. Soliton hopping, for example, can be used for the generation of configurable combs in the radio-frequency domain.

“The physics of soliton generation in a single resonator is relatively wellunderstood today,” says Alexey Tikan a researcher at the Laboratory of Photonics and Quantum Measurements, EPFL. “The field is probing other directions of development and improvement. Coupled resonators are one of a few such perspectives. This approach will allow for the employment of concepts from adjacent fields of Physics. For example, one can form a topological insulator (known in solid state physics) by coupling resonators in a lattice, which will lead to the generation of robust frequency combs immune to the defects of the lattice, and at the same time profiting from the enhanced efficiency and additional degrees of control. Our work makes a step towards these fascinating ideas!”

###

Media Contact
Alexey Tikan
[email protected]

Original Source

https://www.nature.com/articles/s41567-020-01159-y

Related Journal Article

http://dx.doi.org/10.1038/s41567-020-01159-y

Tags: Chemistry/Physics/Materials SciencesMaterialsOptics
Share13Tweet8Share2ShareShareShare2

Related Posts

Racial and ethnic diversity in research

Scientific publishers and funding agencies unite in favor of racial and ethnic diversity in research

June 2, 2023
STAR Time Projection CHamber

Subtle signs of fluctuations in critical point search

June 2, 2023

UVA-led discovery challenges 30-year-old dogma in associative polymers research

June 2, 2023

Cancer cells rev up synthesis, compared with neighbors

June 1, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In