• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 19, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Opening new doors: First synthetic mechanosensitive potassium channel

Bioengineer by Bioengineer
July 15, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Intrigued by the properties of ion channel proteins commonly observed in cells, Tokyo Tech researchers have developed the first synthetic mechanosensitive potassium channel using a newly developed aromatic fluorinated amphiphilic cyclophane. Displaying both “stimuli responsiveness” and “selective ion transport” abilities, their new ion channel could open new doors for the future therapeutic and industrial usage of synthetic mechanosensitive channels.

Opening new doors: First Synthetic Mechanosensitive Potassium Channel

Credit: Kohei Sato, Tokyo Institute of Technology

Intrigued by the properties of ion channel proteins commonly observed in cells, Tokyo Tech researchers have developed the first synthetic mechanosensitive potassium channel using a newly developed aromatic fluorinated amphiphilic cyclophane. Displaying both “stimuli responsiveness” and “selective ion transport” abilities, their new ion channel could open new doors for the future therapeutic and industrial usage of synthetic mechanosensitive channels.

Nature inspires mankind in a myriad of ways. Take, for instance, “stimuli-responsive” ion transport channel proteins. These proteins are found embedded in cell membranes and respond to a variety of external stimuli, including light, pH, and mechanical force. Given their crucial role in several biological processes, researchers have attempted to synthesize the artificial versions of these channel proteins for use in therapeutic and industrial settings. However, success in synthesizing them has been elusive. The complex structural requirements for stimuli responsiveness and specific ion transport properties have been identified as the major impediment in their synthesis.

Overcoming these difficulties, researchers from Tokyo Institute of Technology (Tokyo Tech), led by Assistant Professor Kohei Sato and Full Professor Kazushi Kinbara, have recently developed the first synthetic mechanosensitive (responsive to mechanical force) channel with potassium ion selectivity. Their findings are published in the Journal of the American Chemical Society. Talking about the study, Assist. Prof. Sato and Prof. Kinbara, affiliated with the School of Life Science and Technology at Tokyo Institute of Technology (Tokyo Tech), say, “With our experience in designing multiblock amphiphiles which self-assemble to form supramolecular ion channels, we hypothesized that linear amphiphiles were not suitable for transporting specific ions; hence, we attempted structural modifications to incorporate both stimuli responsiveness and ion selectivity.” 

As mentioned by Assist. Prof. Sato and Prof. Kinbara, the researchers tweaked the structure of a complex organic molecule known as a multiblock amphiphile to incorporate a perfluorinated aromatic unit. The resulting structure, a fluorinated amphiphilic cyclophane, contained hydrophobic perfluorinated oligo(phenylene–ethynylene) units and hydrophilic octa(ethylene glycol) linkers. The researchers also designed one partially fluorinated and one nonfluorinated amphiphilic cyclophane for investigating the impact of aromatic fluorination.

Microscopy revealed that both the perfluorinated cyclophane, named CFF, and the partially fluorinated cyclophane, named CFH, could get incorporated in the lipid bilayer membrane, while the nonfluorinated cyclophane could not. The researchers then analyzed the ion transport property, stimuli responsiveness, and potassium ion selectivity of CFF and CFH using conductance measurements, fluorescence assays, and computational studies. They identified that both CFF and CFH self-assembled in the bilayer membrane to form supramolecular ion channels. Moreover, the flow of current across the membrane confirmed the transmembrane ion transport property of both CFF and CFH, more efficient and pronounced in CFF.

Changes in the current flow on applying membrane tension further confirmed the stimuli responsiveness of the channels formed by CFF and CFH. The ion transport property of CFF was affected significantly, while it did not change much for CFH. Assist. Prof. Sato, Prof. Kinbara, and their team attribute these variations to the differential interaction of the aromatic units of CFH and CFF within the membrane.

Lastly, fluorescence assay revealed highest permeability of CFF for potassium ions compared to other alkali metal cations. The team found that the higher affinity of potassium ions for the fluorine atoms in the core of the structure was responsible for this phenomenon.

Commenting on these findings, Assist. Prof. Sato and Prof. Kinbara say, “The fact that a supramolecular ion channel formed by CFF possesses such stimuli responsiveness and potassium ion selectivity is not only intriguing, but also strikingly similar to the mechanosensitive channels found in mammalian neurons.”  

With this demonstration, possibilities such as the development of therapies for ion-channel related diseases, manipulation of important biological processes, and development of industrial material purification technologies are already in sight!

###

About Tokyo Institute of Technology

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.

https://www.titech.ac.jp/english/



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.2c04118

Method of Research

Experimental study

Subject of Research

Lab-produced tissue samples

Article Title

Supramolecular Mechanosensitive Potassium Channel Formed by Fluorinated Amphiphilic Cyclophane

Article Publication Date

21-Jun-2022

COI Statement

The authors declare no competing financial interest.

Share12Tweet7Share2ShareShareShare1

Related Posts

Crystal structure of TbMn6Sn6

A breakthrough in magnetic materials research could lead to novel ways to manipulate electron flow with much less energy loss

August 18, 2022
Light in Soybean Canopy

RIPE researchers prove bioengineering better photosynthesis increases yields in food crops for the first time ever

August 18, 2022

Engineers fabricate a chip-free, wireless electronic “skin”

August 18, 2022

Exploring quantum electron highways with laser light

August 18, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    57 shares
    Share 23 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Chi-Huey Wong awarded Tetrahedron Prize for Creativity in Organic Synthesis

    38 shares
    Share 15 Tweet 10
  • The protein signature changes during heart disease caused by reductive stress

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVaccineVirusViolence/CriminalsUrogenital SystemWeather/StormsUrbanizationZoology/Veterinary ScienceWeaponryVehiclesVaccinesVirology

Recent Posts

  • Collaborations inspired early-career NIH grant that could lead to treatment breakthroughs for a range of medical conditions
  • Novel hypotheses that answer key questions about the evolution of sexual reproduction
  • Medieval friars were ‘riddled with parasites’, study finds
  • A breakthrough in magnetic materials research could lead to novel ways to manipulate electron flow with much less energy loss
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In