• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Open sesame: Micro RNAs regulate plant pores

Bioengineer by Bioengineer
March 19, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Environmental changes trigger tiny RNA segments to modify plant pores involved in photosynthesis.

IMAGE

Credit: DGIST


Environmental cues prompt small RNA segments to regulate the development and distribution of tiny pores involved in photosynthesis in plants. The finding by DGIST researchers in Korea was published in the Proceedings of the National Academy of Sciences (PNAS) and could further efforts to improve agricultural crop productivity.

Plant pores, called stomata, are tiny openings mainly found on the surfaces of leaves. They are bordered by two ‘guard cells’, and are involved in gas exchange and water loss between plants and the atmosphere.

Scientists already have a good idea about many molecular signals involved in turning on and off genes responsible for stem cells becoming guard cells. But, in addition to normal hereditary processes, environmental cues can also affect how stomata develop and are distributed. For example, pathogen infections, high carbon dioxide levels and high temperatures lead to reduced pore density.

Molecular cell biologist June Kwak of the Daegu Gyeongbuk Institute of Science and Technology (DGIST) and colleagues investigated if RNA segments called micro RNAs (miRNAs) were involved in stomatal formation and distribution triggered by surrounding conditions. miRNAs are gene regulators that give multi-cellular organisms a degree of flexibility to respond and adapt to environmental changes.

Kwak and his team developed an approach that allowed them to ‘see’ which miRNAs turned on throughout the transition from stem cell to guard cell. They found that slightly more than half of all known miRNAs in a plant called Arabidopsis turned on during the various stages of guard cell development. Inhibiting or increasing the expression of the miRNAs altered guard cell formation and distribution, indicating that miRNAs play a crucial role in the pore development.

Importantly, they singled out a miRNA, called miR399, for its involvement in controlling the pattern of stomatal pores. miR399 is already known for its involvement in regulating phosphate transporter proteins inside plant cells, suggesting a link between stomatal development and phosphate homeostasis in plants.

“This study reveals that miRNAs constitute a crucial component of stomatal development and control,” says Kwak. “Further research will help identify previously unknown cellular processes controlling stomatal development. We expect our findings will help provide a strategy for improving crop productivity by adjusting stomatal pore density, thereby effectively controlling photosynthesis in response to environmental changes.”

###

Media Contact
Kwanghoon Choi
[email protected]
82-537-851-133

Original Source

https://dgist.ac.kr/en/html/sub06/060202.html?mode=V&no=91d17e07f74e58159db244daeb2441c7&GotoPage=1

Related Journal Article

http://dx.doi.org/10.1073/pnas.1919722117

Tags: BiochemistryBiologyBiotechnologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Safety Assessment Framework Developed for Liquid Hydrogen Storage in UAVs

Innovative Safety Assessment Framework Developed for Liquid Hydrogen Storage in UAVs

September 23, 2025
Electrifying Industrial Hydrogen Peroxide via Soft Interfaces

Electrifying Industrial Hydrogen Peroxide via Soft Interfaces

September 23, 2025

Metalloligand-Driven Cobalt Catalyst Achieves Anti-Markovnikov Hydrosilylation of Alkynes Using Tertiary Silanes

September 22, 2025

SwRI Leads IMAP Payload Development for Upcoming Mission to Map Heliosphere Boundary

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Magnolia’s Role in Combating Metabolic Syndrome

Forecasting Cell Population Evolution Using a New Scaling Law

Beet Vinasse: A Urea Alternative for Dairy Cows

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.