• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Oncotarget | Oncogenic driver FGFR3-TACC3 requires 5 coiled-coil heptads for activation and disulfide bonds for stability

Bioengineer by Bioengineer
February 23, 2023
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“Together, this work highlights the need to investigate different breakpoints of fusion proteins, as they may potentially lack the necessary biological activity required for oncogenesis, ultimately leading to misidentification of presumed oncogenes.” 

Figure 1

Credit: 2023 Wang et al.

“Together, this work highlights the need to investigate different breakpoints of fusion proteins, as they may potentially lack the necessary biological activity required for oncogenesis, ultimately leading to misidentification of presumed oncogenes.” 

BUFFALO, NY- February 23, 2023 – A new research paper was published in Oncotarget’s Volume 14 on February 11, 2023, entitled, “Oncogenic driver FGFR3-TACC3 requires five coiled-coil heptads for activation and disulfide bond formation for stability.”

FGFR3-TACC3 represents an oncogenic fusion protein frequently identified in glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell carcinoma, gallbladder cancer, and cervical cancer. Various exon breakpoints of FGFR3-TACC3 have been identified in cancers. In this recent study, researchers Clark G. Wang, Malalage N. Peiris, April N. Meyer, Katelyn N. Nelson, and Daniel J. Donoghue from University of California San Diego analyzed these FGFR3-TACC3 exon breakpoints to determine the minimum contribution of TACC3 for activation of the FGFR3-TACC3 fusion protein. 

“In this work, we characterize the signaling, transforming abilities, and post-translational modifications of FGFR3-TACC3 fusion proteins arising from different exonic breakpoints to determine the requirements for dimerization and constitutive activation of the fusion protein.”

While TACC3 exons 11 and 12 are dispensable for activity, the researchers’ results show that FGFR3-TACC3 requires exons 13-16 for biological activity. A detailed analysis of exon 13, which consists of 8 heptads forming a coiled-coil, further defined the minimal region for biological activity as consisting of 5 heptads from exon 13, in addition to exons 14-16. 

These conclusions were supported by transformation assays of biological activity, examination of MAPK pathway activation, analysis of disulfide-bonded FGFR3-TACC3, and by examination of the Endoglycosidase H-resistant portion of FGFR3-TACC3. These results demonstrate that clinically identified FGFR3-TACC3 fusion proteins differ in their biological activity, depending upon the specific breakpoint. This study further suggests the TACC3 dimerization domain of FGFR3-TACC3 as a novel target in treating FGFR translocation-driven cancers.

“Taken together, these results provide a better understanding of the mechanism for activation of FGFR3-TACC3 and narrow the scope of targeting TACC3 to create effective dimerization disruption-based therapies for treating patients with FGFR3-TACC3 driven tumors.”
 

DOI: https://doi.org/10.18632/oncotarget.28359 

Correspondence to: Daniel J. Donoghue

Email: [email protected]

Keywords:  oncogenic fusion protein, chromosomal translocation, glioblastoma, FGFR3-TACC3, coiled-coil
 

About Oncotarget: Oncotarget (a primarily oncology-focused, peer-reviewed, open access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science.

To learn more about Oncotarget, visit Oncotarget.com and connect with us on social media:

  • Twitter 
  • Facebook 
  • YouTube 
  • Instagram 
  • LinkedIn 
  • Pinterest 
  • LabTube
  • Soundcloud

For media inquiries, please contact: [email protected].

 

Oncotarget Journal Office

6666 East Quaker Str., Suite 1A

Orchard Park, NY 14127

Phone: 1-800-922-0957 (option 2)

###



Journal

Oncotarget

DOI

10.18632/oncotarget.28359

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Oncogenic driver FGFR3-TACC3 requires five coiled-coil heptads for activation and disulfide bond formation for stability

Article Publication Date

11-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blood brain barrier

New study offers clues to how cancer spreads to the brain

March 31, 2023
Researchers

Oregon State researchers develop new model for quickly evaluating potential cervical cancer drugs

March 31, 2023

Researchers report that the outcome of patients with a rare type of astrocytoma, a neuron tumor, is worse than expected

March 31, 2023

Five researchers awarded pilot project funding

March 30, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    68 shares
    Share 27 Tweet 17
  • Extinction of steam locomotives derails assumptions about biological evolution

    48 shares
    Share 19 Tweet 12
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing nature to promote planetary sustainability

New study offers clues to how cancer spreads to the brain

The Institut Pasteur and the University of São Paulo sign articles of association to establish the Institut Pasteur in São Paulo

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In