• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Old and new stars paint very different pictures of the Triangulum Galaxy

Bioengineer by Bioengineer
January 11, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Astronomers have been gazing at the Triangulum galaxy for centuries. But they’ve never seen it quite like this.

Triangulum galaxy

Credit: A. Smercina/M.J. Durbin/J. Dalcanton/B.F. Williams/University of Washington/NASA/ESA

Astronomers have been gazing at the Triangulum galaxy for centuries. But they’ve never seen it quite like this.

On Jan. 11 at the 241st meeting of the American Astronomical Society in Seattle, a team led by scientists at the University of Washington and the Center for Computational Astrophysics will unveil results using the Panchromatic Hubble Andromeda Treasury Triangulum Extended Region — or PHATTER — survey. The endeavor is giving astrophysicists their first in-depth look at the distinct populations of stars that make up the Triangulum galaxy.

Researchers discovered that this satellite galaxy, a close companion of the much larger Andromeda galaxy, has two drastically different structures depending on the age of the stars.

“The youngest stars and the oldest stars in the Triangulum galaxy — which we can separate out using multiple wavelength filters on the Hubble Space Telescope — are organized very differently,” said Adam Smercina, a postdoctoral researcher at the UW. “This is surprising. For a lot of galaxies, like the Milky Way and Andromeda, the stars are distributed roughly consistently, regardless of their age. That is not the case with Triangulum.”

At about 61,000 light years across, Triangulum is the third-largest galaxy in our local group, after Andromeda and our own Milky Way. In lower-resolution images it has a “flocculent” structure – with many small spiral arms radiating out from a well-defined center.

For the PHATTER survey, the Hubble Space Telescope obtained hundreds of high-resolution images of different sections of the Triangulum galaxy in 108 orbits over the course of more than a year. The team tiled these smaller-section images together to create a comprehensive, high-resolution dataset for Triangulum that for the first time showed the galaxy’s individual stars over a large region in its center.

Thanks to Hubble’s array of filters, researchers could also separate those stars by age. The distribution of younger, massive stars — those less than 1 billion years in age — were roughly in line with the “flocculent” pattern, for which the Triangulum is so renowned. But its older, redder stars are distributed in a very different pattern: two spiral arms radiating out from a rectangular bar at the galaxy’s center.

“This was a largely unknown and hidden feature of the Triangulum galaxy that was very difficult to see without this kind of detailed survey,” said Smercina.

Old stars make up the majority of Triangulum’s mass, but are dimmer than their younger counterparts, according to Smercina. That could explain why the “flocculent” pattern prevails in low-resolution images of the galaxy.

The survey team also does not know why young and old stars have such divergent distributions in Triangulum. Satellite galaxies in general are an eclectic bunch, and many questions remain about their formation and evolution. Satellite galaxies come in many different shapes and can be molded by interactions with their parent galaxies. The Milky Way’s largest satellite galaxy, the Large Magellanic Cloud, for example, is similar in size and mass to Triangulum, but has an irregular and globular shape due to its proximity to our own galaxy.

The PHATTER survey’s on-going analysis should shed light on how these types of galaxies form and interact with their larger neighbors. The team plans to follow up on these initial findings by tracing the history of star formation in Triangulum, comparing different sections of the galaxy.

“A major goal of the PHATTER survey was to generate the kind of detailed, high-resolution data on this prominent satellite galaxy that will allow us to examine its structure in depth, trace its history of star formation and compare what we see to theories of galaxy formation and evolution,” said Smercina. “We’re already finding surprises.”

Other team members include Julianne Dalcanton, director of the Center for Computational Astrophysics in New York, a UW professor of astronomy and principal investigator of the PHATTER project; UW research associate professor of astronomy Benjamin Williams; UW doctoral student Meredith Durbin; and Margaret Lazzarini, a postdoctoral researcher at Caltech.

###

For more information, contact Smercina at [email protected]

Corresponding events at the 241st meeting of the American Astronomical Society in Seattle:

  • Wednesday, Jan. 11, 2023 (10:30 a.m. U.S. Pacific Time): Conference presentation
    • Abstract title: “The Structure of M33 in Resolved Stellar Populations from the PHATTER Survey”
    • Authors: Smercina A, Dalcanton J, Williams B, Durbin M, Lazzarini M, Bell E, PHATTER Team
    • Program number: 319.04
    • Session: ”Multiwavelength Observations of Nearby Galaxies” (10 a.m. to 11:30 a.m.)
  • Wednesday, Jan. 11, 2023 (2:15 p.m. U.S. Pacific Time): AAS press conference
    • Topic: ”Discoveries in the Milky Way’s Backyard and in the Universe at Large”

Link to Google Drive folder containing image files with caption/credit information:

https://drive.google.com/drive/folders/1_U0ABZySSxfDGG9336xAiVdK6qrClxmj?usp=sharing



Method of Research

Observational study

Share12Tweet8Share2ShareShareShare2

Related Posts

The Laser setup in research

An illuminated water droplet creates an ‘optical atom’

January 31, 2023
Drilling the ice core

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

January 31, 2023

$1M grant to U chemists could accelerate drug development

January 30, 2023

New method to control electron spin paves the way for efficient quantum computers

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

An illuminated water droplet creates an ‘optical atom’

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In