• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ocean deoxygenation: A silent driver of coral reef demise?

Bioengineer by Bioengineer
April 1, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The world’s coral reefs could be facing the additional threat of ocean deoxygenation

IMAGE

Credit: David Suggett

The existence of coral reefs, in all their abundant biodiversity and beauty, relies largely on a complex symbiosis between reef-building corals and microalgae. This finely tuned, fragile, partnership is constantly under threat from environmental stress – most notably the twin effects of warming waters and ocean acidification caused by climate change. But scientists say a third driver, that of ocean deoxygenation, could pose a greater and more immediate threat to coral reef survival.

A perspective paper published in Nature Climate Change brings together existing
biological, ecological, and geochemical evidence to consider the broader role for ocean deoxygenation in global coral reef degradation. The University of Technology Sydney (UTS) led study has found that the threat of ocean deoxygenation to coral reefs has largely been ignored and remains unaccounted-for in predictions about future reef health. This is despite reef-building corals underpinning both the ecological and economic value of the world’s coral reef ecosystems.

Lead author, Dr David Hughes, a Research Associate at the UTS Climate Change Cluster, said that measurements taken over the last 50 years showed oxygen levels in the world’s oceans have already declined by around 2% “largely due to the dual forces of global climate change and coastal pollution caused by nutrient runoff”.

“Our oceans are slowly suffocating and although we have some understanding about deoxygenation in the open ocean this process has been largely overlooked in coastal tropical reef systems.

“Although oxygen is a relatively easy environmental variable to measure, there is surprisingly very little data available for coral reefs,” he said.

The authors, who also include scientists from the University of Copenhagen, Denmark and University of Konstanz, Germany, say this lack of data makes it very difficult to assess what normal oxygen levels are on coral reefs or the dissolved oxygen threshold at which areas might become “dead zones”.

“We simply don’t know what constitutes lethal or sub-lethal oxygen thresholds within coral reefs or the role such thresholds will play in determining what future reefs will look like,” Dr Hughes said.

Associate Professor David Suggett, senior author and leader of the Future Reefs Research Program at UTS said it’s likely that understanding the impact of deoxygenation for places like the Great Barrier Reef “holds the key to being able to more accurately predict the future for coral reefs.”

“Oxygen fundamentally sustains reef life.

“It’s possible that declining oxygen availability has amplified, and will continue to amplify, the impact of catastrophic events such as heat-wave driven mass coral bleaching. Capacity for organisms to resist stressors is severely compromised under reduced oxygen availability. It’s why we give oxygen to humans under trauma”, he said.

“Identifying thresholds of low oxygen tolerance and how they vary across coral reef-associated species and environmental history is arguably the key step in understanding
how reef communities will respond to continued ocean deoxygenation,” Associate Professor Suggett said.

The authors say that unlike the deep knowledge gained over the past 30 years around the twin impacts of temperature and pH levels, there wasn’t the same depth of knowledge about ocean deoxygenation and, therefore, how this will shape reef ecologies.

Suggett and Hughes say establishment of an oxygen sensor network on the GBR would be a good place to start and could help develop an oxygen inventory of the reef to enable new approaches and management practices.

A positive outcome from the study is the sign that local management is crucial to preventing further deoxygenation in coastal waters.

“The resources being mobilised to improve agricultural and catchment management on the GBR are good examples of practices to ensure the oxygen stocks of coastal reefs,” Associate Professor Suggett said.

“Everyone has a role to play to ensure our reefs don’t suffocate further,” he said.

###

Media Contact
Ma
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41558-020-0737-9

Tags: BiologyClimate ChangeEarth ScienceEcology/EnvironmentMarine/Freshwater BiologyOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bee Genome Study Uncovers Transposable Element Evolution

November 5, 2025
blank

Single-Particle Genomics Reveals Abundant Unusual Marine Viruses

November 5, 2025

Revolutionary Brain Implants Offer Therapy Without Surgery

November 5, 2025

Exploring Histone Acetyltransferase Genes in Bursaphelenchus xylophilus

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Data Variables in Neonatal Transport Uncovered

Plant Polyphenols: Key Players in Ovarian Aging

Revolutionizing Signal Transduction with Nano-Bio Interfaces

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.