• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, October 3, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ocean animals vacate areas both around and outside deep-sea mining operations

Bioengineer by Bioengineer
July 14, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In 2020, Japan performed the first successful test extracting cobalt crusts from the top of deep-sea mountains to mine cobalt—a mineral used in electric vehicle batteries. Not only do directly mined areas become less habitable for ocean animals, but mining also creates a plume of sediment that can spread through the surrounding water. An investigation on the environmental impact of this first test, published July 14th in the journal Current Biology, reports a decrease in ocean animals both in and around the mining zone.

Photo of mining apparatus operating on the seafloor

Credit: CREDIT Travis Washburn

In 2020, Japan performed the first successful test extracting cobalt crusts from the top of deep-sea mountains to mine cobalt—a mineral used in electric vehicle batteries. Not only do directly mined areas become less habitable for ocean animals, but mining also creates a plume of sediment that can spread through the surrounding water. An investigation on the environmental impact of this first test, published July 14th in the journal Current Biology, reports a decrease in ocean animals both in and around the mining zone.

The International Seabed Authority (ISA), which has authority over seafloor resources outside a given country’s jurisdiction, has yet to finalize a set of deep-sea mining regulations. However, for companies looking to mine the ocean’s floor for minerals such as cobalt, copper, and manganese, the ISA is required to either adopt a set of exploitation regulations or consider mining exploitation under existing international laws starting July 9.

“These data are really important to get out,” says first author Travis Washburn, a benthic ecologist who works closely with the Geological Survey of Japan. “A set of regulations is supposed to be finalized soon, so a lot of these decisions are happening now.”

The team analyzed data from three of Japan’s visits to the Takuyo-Daigo seamount: one month before the mining test, one month after, and one year after. After taking a seven-day boat trip from port, a remotely operated vehicle went to the seafloor and collected video of the impacted areas. One year after the mining test, researchers observed a 43% drop in fish and shrimp density in the areas directly impacted by sediment pollution. However, they also noted a 56% drop in the fish and shrimp density of surrounding areas. While there are several possible explanations for this decrease in fish populations, the team thinks it may be due to the mining test contaminating fish food sources.  

The study did not observe a major change in less mobile ocean animals, like coral and sponges. However, the researchers note that this was only after a two-hour test, and coral or sponges could still be impacted by long-term mining operations.

“I had assumed we wouldn’t see any changes because the mining test was so small. They drove the machine for two hours, and the sediment plume only traveled a few hundred meters,” says Washburn. “But it was actually enough to shift things.”

The researchers note that they will need to repeat this study several times to gain a more accurate understanding of how deep-sea mining impacts the ocean floor. Ideally, multiple years of data should be collected before a mining test occurs to account for any natural variation in ocean animal communities.

“We’re going to need more data regardless, but this study highlights one area that needs more focus,” says Washburn. “We’ll have to look at this issue on a wider scale, because these results suggest the impact of deep-sea mining could be even bigger than we think.”

###

This work was supported by the Agency for Natural Resources and Energy of Japan, the Research Laboratory on Environmentally-Conscious Developments and Technologies, and the UK Natural Environment Research Council. The authors declare no conflicts of interest.

Current Biology, Washburn et al. “Seamount mining test provides evidence of ecological impacts beyond deposition” https://www.cell.com/current-biology/fulltext/S0960-9822(23)00815-1   

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact [email protected].



Journal

Current Biology

DOI

10.1016/j.cub.2023.06.032

Method of Research

Observational study

Subject of Research

Animals

Article Title

Seamount mining test provides evidence of ecological impacts beyond deposition

Article Publication Date

14-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Captured endangered Preble’s meadow jumping mouse (Zapus hudsonius preblei)

New biobanking partnership safeguards the genetic diversity of America’s endangered species

October 3, 2023
Michael Metzger, Ph.D., Assistant Investigator, Pacific Northwest Research Institute

Genomic analysis reveals ancient cancer lineages in clams

October 2, 2023

Study on mysterious Amazon porcupine can help its protection

October 2, 2023

A hygiene program for chromosomes

October 2, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New biobanking partnership safeguards the genetic diversity of America’s endangered species

Improved mangrove conservation could yield cash, carbon, coastal benefits

How floods kill, long after the water has gone – global decade-long study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In