• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, September 22, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NYUAD researchers find new method to allow corals to rapidly respond to climate change

Bioengineer by Bioengineer
February 11, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Reef-building corals transmit epigenetic adaptations to their offspring that can combat the effects of global warming

IMAGE

Credit: NYU Abu Dhabi

Fast Facts:

  • Discovery by NYU Abu Dhabi and KAUST researchers points to new avenue for corals to rapidly respond to climate change
  • The research, published in Nature Climate Change, demonstrates that epigenetic modifications in reef-building corals can be transmitted from ‘parent’ corals to their offspring
  • The findings suggest that generating pre-adapted coral colonies and larvae via epigenetic conditioning would help seeding populations naturally repopulate dying reefs
  • Epigenetics means ‘above’ or ‘on top of’ genetics. It refers to external modifications to DNA that turn genes ‘on’ or ‘off.’ These modifications do not change the DNA sequence, but instead, they affect how cells ‘read’ genes.

Abu Dhabi, UAE (February 10, 2020) – For the first time, a team of marine biology and environmental genomics researchers at NYU Abu Dhabi (NYUAD) and KAUST (King Abdullah University of Science and Technology) have demonstrated that epigenetic modifications in reef-building corals can be transmitted from parents to their offspring. This discovery, reported in a new study in the journal Nature Climate Change, not only enhances the biological understanding of corals, it also opens up new approaches to stem the loss of this foundation species of marine ecosystems. The findings suggest that generating pre-adapted coral colonies and larvae via epigenetic conditioning would enable the creation of seeding populations that can naturally repopulate dying reefs.

Climate change is causing significant declines in coral reefs worldwide. The long generation times of corals has inspired fears that corals may not be able to genetically adapt in time to overcome the rapid pace of climate change. However, in the study “Intergenerational epigenetic inheritance in reef-building corals,” the NYU Abu Dhabi team led by NYUAD Assistant Professor of Biology Youssef Idaghdour; NYUAD Associate Professor of Biology John Burt; former NYUAD postdoctoral associate Emily Howells and colleagues from King Abdullah University of Science and Technology found that a species of stony coral Platygyra daedalea, commonly referred to as ‘brain coral’, has the ability to pass to their offspring epigenetic marks that help them quickly adapt to adverse environmental changes.

Epigenetics allows the modification of the “context” of the genome without altering the actual genetic code. Instead, it alters how it is used – such as when, and to what degree, a gene will be turned on or off.

The researchers collected colony fragments from the stony coral from two different ocean environments (Abu Dhabi and Fujairah) and sampled adults, sperm, and larvae from reciprocal crosses. Epigenetic profiles of corals were determined by whole genome sequencing. They identified a strong environmental signature in the epigenome of the coral, as well as the epigenetic factors strongly associated with the extreme hot and saline environment and highlighted their potential effect on coral fitness.

“What we are finding is a surprising amount of potential for both male and female corals to transmit their epigenome to their offspring,” said Idaghdour. “This research shows the capacity of coral parents to positively impact the resilience of their offspring in environments that are changing too quickly. Our learnings in this exciting field hold great potential for the preservation of these unique ecosystems for future generations.”

“Climate change represents the most pressing threat to coral reefs globally, with most research estimating widespread loss of corals within the next century. Given the long generation times of corals, it has commonly been accepted that the rapid rate of climate change is outpacing the capacity for corals to genetically adapt to cope with increasing temperatures,” said Burt. “This study demonstrates that epigenetic changes that enhance thermal tolerance can be passed to offspring, dramatically enhancing corals’ capacity to rapidly respond to environmental change.”

###

About NYU Abu Dhabi

NYU Abu Dhabi is the first comprehensive liberal arts and science campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly-selective liberal arts, engineering and science curriculum with a world center for advanced research and scholarship enabling its students to succeed in an increasingly interdependent world and advance cooperation and progress on humanity’s shared challenges. NYU Abu Dhabi’s high-achieving students have come from 115 nations and speak over 115 languages. Together, NYU’s campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.

Media Contact
Adam Pockriss
[email protected]
212-843-8286

Related Journal Article

http://dx.doi.org/10.1038/s41558-019-0687-2

Tags: BiologyClimate ChangeGenesGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

Wildlife mitigating measures no help for Ottawa’s freshwater turtles

Wildlife mitigating measures no help for Ottawa’s freshwater turtles

September 22, 2023
A Caribbean box jellyfish. Black dots embedded low on the bell are the animal’s visual sensory and learning center called rhopalia.

Jellyfish are smarter than you think

September 22, 2023

Jellyfish shown to learn from past experience for the first time

September 22, 2023

The dance of organ positioning: a tango of three proteins

September 21, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • University of South Florida scientist: Barnacles may help reveal location of lost Malaysia Airlines flight MH370

    46 shares
    Share 18 Tweet 12
  • Lithuanian invention at the forefront of solar technology breakthrough

    41 shares
    Share 16 Tweet 10
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UC San Diego Health named national leader in delivering high-quality patient care

Editorial addresses clinician burnout with unifying systems medicine model

Louisiana Cancer Research Center Associate Director of Administration Sven Davisson named Treasurer of Association of Independent Research Institutes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In