• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, August 13, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NUS engineers devise novel approach to wirelessly power wearable devices

Bioengineer by Bioengineer
June 14, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers successfully demonstrated the use of the human body as a medium for transmitting and harvesting energy to power wearables

IMAGE

Credit: National University of Singapore

Advancements in wearable technology are reshaping the way we live, work and play, and also how healthcare is delivered and received. Wearables that have weaved their way into everyday life include smart watches and wireless earphones, while in the healthcare setting, common devices include wearable injectors, electrocardiogram (ECG) monitoring patches, listening aids, and more.

A major pain point facing the use of these wearables is the issue of keeping these devices properly and conveniently powered. As the number of wearables one uses increases, the need to charge multiple batteries rises in tandem, consuming huge amounts of electricity. Many users find it cumbersome to charge numerous devices every day, and inconvenient service disruptions occur when batteries run out.

A research team, led by Associate Professor Jerald Yoo from the Department of Electrical and Computer Engineering and the N.1 Institute for Health at the National University of Singapore (NUS), has developed a solution to these problems. Their technology enables a single device, such as a mobile phone placed in the pocket, to wirelessly power other wearable devices on a user’s body, using the human body as a medium for power transmission. The team’s novel system has an added advantage – it can harvest unused energy from electronics in a typical home or office environment to power the wearables.

Their achievement was first published in the journal Nature Electronics on 10 June 2021. It is the first of its kind to be established among existing literature on electronic wearables.

Using the human body as a medium for energy transmission

To extend battery life and sustain fully autonomous – yet wireless – operations of wearable devices, power transmission and energy harvesting approaches are required. However, conventional approaches for powering up body area wearables are limited by the distance that power can be transmitted, the “path” the energy can travel without facing obstacles, and the stability of energy movement. As such, none of the current methods have been able to provide sustainable power to wearables placed around the entire human body.

The NUS team decided to turn the tables on these limitations by designing a receiver and transmitter system that uses the very obstacle in wireless powering – the human body – as a medium for power transmission and energy harvesting. Each receiver and transmitter contains a chip that is used as a springboard to extend coverage over the entire body.

A user just needs to place the transmitter on a single power source, such as the smart watch on a user’s wrist, while multiple receivers can be placed anywhere on the person’s body. The system then harnesses energy from the source to power multiple wearables on the user’s body via a process termed as body-coupled power transmission. In this way, the user will only need to charge one device, and the rest of the gadgets that are worn can simultaneously be powered up from that single source. The team’s experiments showed that their system allows a single power source that is fully charged to power up to 10 wearable devices on the body, for a duration of over 10 hours.

As a complementary source of power, the NUS team also looked into harvesting energy from the environment. Their research found that typical office and home environments have parasitic electromagnetic (EM) waves that people are exposed to all the time, for instance, from a running laptop. The team’s novel receiver scavenges the EM waves from the ambient environment, and through a process referred to as body-coupled powering, the human body is able to harvest this energy to power the wearable devices, regardless of their locations around the body.

Paving the way for smaller, battery-less wearables

On the benefits of his team’s method, Assoc Prof Yoo said, “Batteries are among the most expensive components in wearable devices, and they add bulk to the design. Our unique system has the potential to omit the need for batteries, thereby enabling manufacturers to miniaturise the gadgets while reducing production cost significantly. More excitingly, without the constraints of batteries, our development can enable the next generation wearable applications, such as ECG patches, gaming accessories, and remote diagnostics.”

The NUS team will continue to enhance the powering efficiency of their transmitter/receiver system, with hopes that in future, any given power-transmitting device, be it a user’s mobile phone or smart watch, can satisfy the network power demands of all other wearables on the body, thus enabling a longer battery lifetime.

###

Media Contact
Denise Yuen
[email protected]

Original Source

http://news.nus.edu.sg/nus-engineers-devise-novel-approach-to-wirelessly-power-multiple-wearable-devices-using-a-single-source/

Related Journal Article

http://dx.doi.org/10.1038/s41928-021-00592-y

Tags: Biomedical/Environmental/Chemical EngineeringBusiness/EconomicsDiagnosticsElectrical Engineering/ElectronicsHealth CareHealth Care Systems/ServicesMedicine/HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Effective steering responses and successful rates of honeybee under electrical stimulations with different duty cycles

Experimental verification on steering flight of honeybee by electrical stimulation

August 13, 2022
David Wetz

UTA researcher explores integration and power electronic regulation of batteries for Navy

August 12, 2022

Bug eyes and bat sonar: UCLA bioengineers turn to animal kingdom for creation of bionic super 3D cameras

August 12, 2022

Overcoming a major manufacturing constraint

August 12, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonWeather/StormsZoology/Veterinary ScienceUrbanizationVehiclesVirologyVirusWeaponryViolence/CriminalsVaccineVaccinesUrogenital System

Recent Posts

  • Experimental verification on steering flight of honeybee by electrical stimulation
  • UTA researcher explores integration and power electronic regulation of batteries for Navy
  • Bug eyes and bat sonar: UCLA bioengineers turn to animal kingdom for creation of bionic super 3D cameras
  • Overcoming a major manufacturing constraint
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In