• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Novo Biosciences achieves major milestones in moving trodusquemine into clinical trials

Bioengineer by Bioengineer
April 12, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Regenerative medicine drug candidate has potential applications in heart disease and Duchenne muscular dystrophy

IMAGE

Credit: Novo Biosciences

BAR HARBOR, MAINE – Novo Biosciences Inc., has achieved several major milestones in its mission of bringing its breakthrough drug candidate, trodusquemine (aka MSI-1436), to market as a potential regenerative medicine treatment for heart disease and Duchenne muscular dystrophy (DMD). Trodusquemine is a repurposed drug candidate that has already been shown to be well tolerated by patients.

“Trodusquemine holds significant potential for the treatment of some of our most devastating diseases,” said Kevin Strange, Ph.D., Novo’s CEO. “Our recent progress on the path toward clinical trials gives hope to the millions of patients who face limited treatment options.”

Novo has demonstrated that trodusquemine stimulates the regeneration of heart muscle tissue in mice after an artificially induced heart attack. Trodusquemine is the only small molecule known to stimulate regeneration of the adult mammalian heart. Heart disease is the nation’s leading cause of death, but treatment options are limited to efforts to prevent a secondary heart attack and to organ transplantation for patients who have suffered heart failure.

Voot Yin, Ph.D., Novo’s chief scientific officer, was awarded a two-year, $1.5 million Small Business Innovation Research grant in 2017 from the National Heart, Lung and Blood Institute, an institute of the National Institutes of Health (NIH), to study trodusquemine in the pig, the animal model whose heart most closely resembles that of a human. The pig study is the critical next step in moving trodusquemine into clinical trials in patients who have suffered an acute heart attack. Early results from these studies are “very encouraging,” according to Strange.

Novo has also demonstrated that trodusquemine strikingly slows heart and skeletal muscle degeneration in a mouse DMD model. DMD is a neuromuscular disease caused by mutations in the dystrophin gene. It is characterized by rapidly progressing muscle weakness and wasting due to degeneration of skeletal, smooth and cardiac muscle. DMD is irreversible and patients typically die in early adulthood. Because DMD is designated an orphan, or rare, disease, the U.S. Food and Drug Administration (FDA) offers fast-tracked approvals and other incentives to drug developers.

In a recent Pre-Investigational New Drug (PIND) meeting with the FDA, Novo was informed that its studies in the mouse DMD model provided sufficient proof-of-principle evidence of trodusquemine’s efficacy in slowing heart and skeletal muscle damage. Strange said, “We are extremely encouraged by this conclusion. We’ve got more work to do, including developing a dosing regimen for juvenile DMD patients and defining toxicity in juvenile animal models, but the path to potential clinical trials is now defined clearly.”

Trodusquemine recently attracted the attention of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), another institution within the NIH. Yin was awarded a $100,000 pilot grant to study the efficacy of trodusquemine as a potential regenerative medicine therapy for diabetic kidney disease on February 28. The one-year, proof-of-concept grant is funded by the NIDDK-sponsored DiaComp (Diabetic Complications Consortium) Pilot and Feasibility Program. DiaComp supports R&D aimed at protecting and restoring the function of organs affected by the complications of diabetes.

Novo scientists will study trodusquemine in mice with multiple, severe, kidney abnormalities that closely resemble human diabetic nephropathy, a complication of diabetes that leads to kidney disease. As with heart disease, the treatment options for chronic kidney disease are limited. More than 200,000 diabetic kidney disease patients undergo long-term dialysis or kidney transplant annually. But dialysis is costly and time consuming and the demand for donor organs for transplantation far exceeds supply.

The discovery of trodusquemine reflects Novo’s pioneering R&D strategy, which was the subject of a “marquee” article, “A Shot at Regeneration,” in the April 2019 edition of Scientific American, one of the world’s most prestigious media outlets. Scientific American is published in 14 languages and has a combined worldwide print and online circulation of nearly 20 million.

###

About Novo Biosciences

Our scientists use a unique, rapid and cost-effective strategy to develop breakthrough drugs to regenerate damaged organs and tissues. These drugs spur the body to heal itself by triggering powerful mechanisms of self-repair and regrowth that lie dormant in our genes. It’s a bold, new approach with the potential to transform the way we treat human disease. For more information, please visit novobiosciences.com.

Media Contact
Stefanie Matteson
[email protected]

Tags: BiotechnologyCardiologyClinical TrialsDiabetesGrants/FundingMedicine/HealthPharmaceutical ChemistryPharmaceutical SciencePharmaceutical Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    38 shares
    Share 15 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.