• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel organoid models to study non-alcoholic fatty liver disease

Bioengineer by Bioengineer
February 23, 2023
in Biology
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the Organoid group (former Clevers group, Hubrecht Institute) together with researchers from the Princess Máxima Center for pediatric oncology established novel human organoid models of fatty liver disease. They used these models to shed light on drug responses, and established a CRISPR-screening platform to identify novel disease mediators and potential therapeutic targets. These models will aid in testing and developing novel medicines to treat fatty liver disease and help to get a better understanding of the disease biology. The results of the study will be published in Nature Biotechnology on the 23rd of February, 2023. 

Organoid modeling a genetic lipid disorder.

Credit: Delilah Hendriks & Benedetta Artegiani. Copyright Hubrecht Institute.

Researchers from the Organoid group (former Clevers group, Hubrecht Institute) together with researchers from the Princess Máxima Center for pediatric oncology established novel human organoid models of fatty liver disease. They used these models to shed light on drug responses, and established a CRISPR-screening platform to identify novel disease mediators and potential therapeutic targets. These models will aid in testing and developing novel medicines to treat fatty liver disease and help to get a better understanding of the disease biology. The results of the study will be published in Nature Biotechnology on the 23rd of February, 2023. 

Fatty liver

The buildup of fat in the liver is an increasingly common disease worldwide, with over a quarter of the worldwide population affected. Having a fatty liver can lead to inflammation, impairment of liver function, and eventually result in scar tissue formation. Different causes can lead to the development of fatty liver, with diet and lifestyle being the most common contributors. Moreover, genetics can play an important role. For example, genetic lipid disorders make patients more likely to develop fatty liver disease and several mutations heighten the risk to develop the disease. 

No therapy

Worryingly, no treatment for fatty liver currently exists that can halt or revert the disease. As the disease progresses, the risk of irreversible liver damage and the need for liver transplantation greatly increases. In addition, individuals with fatty liver are at heightened risk to develop liver cancer. Identifying ways to tackle the disease is very challenging due to the scarcity of model systems. Mice differ greatly in their metabolism and can therefore not be used as a representative model system of the human disease. Moreover,  current human-based in vitro models possess several drawbacks. Genetic modification of these models is difficult and it is currently impossible to quickly generate large numbers of cells.  

Fatty liver organoids

Now, the researchers turned to organoids to establish three models that capture different triggers of fatty liver development. Firstly, they “fed” the organoids with a mixture of fatty acids to mimic a Western diet and witnessed the rapid development of fatty liver organoids. As a second model, the team introduced the top risk mutation for fatty liver disease into their organoid system using a new CRISPR tool named prime editing. Organoids with this mutation displayed much more severe fat accumulation than organoids without it. Finally, the researchers also modeled genetic lipid disorders using CRISPR-Cas9 to investigate how these disorders influence the development of fatty liver disease. These mutant organoids spontaneously developed severe fatty livers as a result of a build-up of sugar-derived fats. 

Discovery of novel drug targets

The team then screened a large number of drug candidates to treat fatty liver disease on the newly developed organoid models. Interestingly, the researchers observed that the different fatty liver organoid models responded to the drugs in a very comparable manner. Doing so, they identified a subset of drugs that were effective across all models. Interestingly, these effective drugs functioned by a common mechanism in which the generation of lipids from sugars was blocked. Importantly, the team also observed that organoids having the top risk mutation for fatty liver disease did not react to all drugs in the same way as organoids without the mutation. This shows the organoids can be used as a tool for personalized medicine.

CRISPR platform

The researchers went on to use their organoid models to establish a genetic screening platform to identify novel genes with roles in fatty liver disease. The researchers turned their organoids into a CRISPR-screening platform, named FatTracer. They used this platform to investigate the effect of loss of specific genes on the fatty liver phenotype, which could be visualized in real-time over 20 days. After screening of 35 candidates, a novel and critical role for the FADS2 gene (fatty acid desaturase 2) in fatty liver disease was discovered. Disruption of FADS2 made the organoids much more fatty. The team wondered whether the opposite condition, having more FADS2, would instead be beneficial to the disease. Indeed, when overexpressing FADS2, the fatty liver that the organoids once displayed was severely reduced, suggesting it is a potential novel therapeutic target.

Future directions

These novel fatty liver organoid models pave the way for many future directions. For example, the researchers would like to better understand the genetic risks that are linked to the development of fatty liver, as well as to study what factors influence disease progression. The ultimate aim is to use these models to define (personalized) drug therapies that can cure the liver from fat overload.

—–

Publication:

Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Delilah Hendriks#, Jos F. Brouwers, Karien Hamer, Maarten H. Geurts, Léa Luciana, Simone Massalini, Carmen López-Iglesias, Peter J. Peters, Maria J. Rodríguez-Colman, Susana Chuva de Sousa Lopes, Benedetta Artegiani# & Hans Clevers#. Nature Biotechnology, 2023.

# = Corresponding authors

—–

This work was done together in collaboration with Avans University of Applied Sciences, Maastricht University, and Leiden University Medical Center.

Hans Clevers is advisor/guest researcher at the Hubrecht Institute for Developmental Biology and Stem Cell Research and at the Princess Máxima Center for Pediatric Oncology. He is also University Professor at Utrecht University and Oncode Investigator. Since March 2022, Hans Clevers is Head of pharma Research and Early Development (pRED) of Roche, Basel Switzerland.

Benedetta Artegiani is group leader at the Princess Máxima Center for Pediatric Oncology.

—–

About the Hubrecht Institute 

The Hubrecht Institute is a research institute focused on developmental and stem cell biology. Because of the dynamic character of the research, the institute as a variable number of research group, around 20, that do fundamental, multidisciplinary research on healthy and diseased cells, tissues and organisms. The Hubrecht Institute is a research institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), situated on Utrecht Science Park. Since 2008, the institute is affiliated with the UMC Utrecht, advancing the translation of research to the clinic. The Hubrecht Institute has a partnership with the European Molecular Biology Laboratory (EMBL). For more information, visit www.hubrecht.eu. 



Journal

Nature Biotechnology

DOI

10.1038/s41587-023-01680-4

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis

Article Publication Date

23-Feb-2023

COI Statement

H.C. is inventor of several patents related to organoid technology; his full disclosure is given at https://www.uu.nl/staff/JCClevers/. D.H., B.A. and H.C. are inventors on a filed patent application related to this work (PCT/NL2022/050641). Near the end of this study, H.C. became head of Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, Basel, Switzerland. The other authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

DNA structure: AT and GC bonds

Fast and low-cost computational method can monitor spread of antibiotic resistance over time

March 27, 2023
Bembidion brownorum

Rare beetle, rediscovered after 55 years, named in honor of Jerry Brown

March 27, 2023

Beaver fossil named after Buc-ee’s

March 27, 2023

Meet the hybrid micro-robot: The tiny robot that is able to navigate in a physiological environment and capture targeted damaged cells

March 27, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ISTA welcomes first journalists in residence

Candidate found to inhibit malignant melanoma growth

Cancer that spreads to the lung maneuvers to avoid being attacked by “killer” T cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In