• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Novel nanoparticle technology to identify healthcare-associated infections receives $1.5 million

Bioengineer by Bioengineer
February 7, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Combination of novel nanomaterials with a genomics-based approach will allow for precise identification of pathogens that cause Healthcare-Associated Infections (HAIs).

IMAGE

Credit: OptiSolve, a division of Charlotte Products Ltd.


Healthcare-associated infections are the fourth leading cause of death in Canada, predicted to move up to second place by 2050. Scientists at the University of Toronto received $1.5 million in newly-announced funding from Genome Canada to support efforts to develop a new nanoparticle sensor technology that will allow hospitals and long-term care facilities to rapidly detect and visually identify highly infectious pathogens including C. difficile, methicillin-resistant S aureus (MRSA), Norovirus and influenza.

“Patient-to-patient transmission of dangerous bacteria and viruses through contact with contaminated surfaces is a major problem in healthcare facilities,” says Shana Kelley, University Professor and scientist at the University of Toronto’s Leslie Dan Faculty of Pharmacy. “The sensors that are the focus of this project will enable the rapid and sensitive detection of these pathogens on surfaces to enable their effective decontamination, and potentially reduce or prevent the spread of illness.”

Kelley and her team have partnered with Charlotte Products Ltd., a family-owned Canadian company that develops and manufactures innovative cleaning products. The company has developed an environmental monitoring system and optical sensor technology, called Optisolve Pathfinder娪, which is able to identify areas of biological contamination but not specific bacterial species.

“To effectively prevent the spread of these illnesses, infection control experts need to be able to identify exactly what is on a surface in order to properly decontaminate it. By using nanomaterials enhanced with pathogen-specific recognition units, this information will be gleaned on site, without the need to wait and run tests in a lab offsite,” says Kelley.

Called OptiSolve Insight®™, the new system will significantly reduce healthcare-associated illness while also enabling infection control specialists to avoid taking a “worst-case scenario” approach to infection outbreaks, which can include bed closures and costly cancellation of procedures. The system could also be used to detect and identify pathogens in other high-risk locations like transit hubs and education facilities.

“We hope that the research funded by Genome Canada will decrease rates of infection significantly, which will benefit patients and the healthcare system overall,” says Kelley. In addition to the Genome Canada funding, the project is receiving support from the Ontario Centres of Excellence, University of Toronto and Charlotte Products Ltd that gives the project $4.5M in total funding.

###

Media Contact
Kate Richards
[email protected]
416-978-7117

Tags: Health CareInfectious/Emerging DiseasesMedicine/HealthNanotechnology/MicromachinesPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Msx2 Inhibits Osteoclast Fusion, Boosts Bone Growth

Msx2 Inhibits Osteoclast Fusion, Boosts Bone Growth

August 6, 2025
Three-Step Forensic Method Differentiates Human, Pig Nails

Three-Step Forensic Method Differentiates Human, Pig Nails

August 6, 2025

Decoding Gaming Disorder: Insights from Network Analysis

August 6, 2025

Two Decades of Progress in Congenital Heart Disease

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wild chimpanzees acquire communication skills from maternal relatives, not paternal ones

Msx2 Inhibits Osteoclast Fusion, Boosts Bone Growth

Three-Step Forensic Method Differentiates Human, Pig Nails

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.