• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel method to design new peptide therapeutics pioneered

Bioengineer by Bioengineer
February 8, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hokkaido University researchers have developed a novel method to design and develop peptide antibiotics in large numbers, which will prove critical to controlling antibiotic resistance.

Microtiter plates used in the study

Credit: Akira Katsuyama

Hokkaido University researchers have developed a novel method to design and develop peptide antibiotics in large numbers, which will prove critical to controlling antibiotic resistance.

Applications of new molecules as drugs are expected to be effective in treating diseases that are difficult to cure with currently used conventional drugs. Peptides are one such type of molecule. They are well studied, and several drugs have been developed by the modification of different peptides. Modifying and testing new peptide structures is a time-consuming process, so any method that could reduce the time required for this process would rapidly accelerate drug development.

Researchers at Hokkaido University led by Assistant Professor Akira Katsuyama and Professor Satoshi Ichikawa at the Faculty of Pharmaceutical Sciences have developed a “scanning and direct derivatization” method for targeted modification of polymyxin, an antibiotic of last resort. Their work was published in the Journal of the American Chemical Society.

“Peptides are small molecules composed of amino acids, and are involved in many natural processes,” explains Katsuyama. “Due to how easy it is to modify them, peptides have great potential as drugs to treat diseases—modified peptides currently in use include drugs to treat diabetes, cancer, and other diseases.”

While the modification of peptides to enhance and alter their properties and biological effects is quite common, the process of making these changes in a targeted and deliberate manner is still very difficult. The research team approached this problem by modifying a technique known as peptide scanning, which is used to determine the role and importance of each amino acid in a peptide, to modify specific amino acids in polymyxin by the addition of different chemical groups.

The team first designed a series of 12 scanning derivatives, and tested their antibiotic activity against 9 bacteria, including six highly virulent and antibiotic resistant bacterial pathogens. Based on their results, they chose three scanning derivatives for the further development for new antibiotic candidates that targets polymyxin-resistant Escherichia coli; and another four scanning derivatives to develop new narrow- and broad-spectrum antibiotic candidates.

The selected scanning derivatives were then subjected to direct derivatization. From the three selected to target E. coli, 324 derivatives were generated and tested for antibacterial activity; just four derivatives showed antibiotic activity comparable to polymyxin. In the assay of the narrow-spectrum derivatives, 10 out of 54 showed antibiotic activity against Pseudomonas aeruginosa comparable to polymyxin. Finally, for the broad-spectrum derivatives, just one out of 162 derivatives exhibited an antibiotic activity comparable to or stronger than that of polymyxin against all nine strains.

“We have shown that the technique we developed, the ‘scanning and direct derivatization’ protocol, can be used to generate and evaluate hundreds of peptide derivatives,” concluded Ichikawa. “We have also proven that it can be used to simultaneously develop derivatives with different effects. This method is widely applicable for the optimization of peptides.”



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.2c12971

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Discovery of biologically optimized polymyxin derivatives facilitated by peptide scanning and in situ screening chemistry

Article Publication Date

28-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

March 21, 2023
Hitchhiking insect

Spotted lanternfly spreads by hitching a ride with humans

March 20, 2023

Oregon State researchers begin to unravel whale entanglement risk factors off Oregon Coast

March 20, 2023

In hot water: Ocean warming impacts growth, metabolic rate and gene activity of newly hatched clownfish

March 20, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    61 shares
    Share 24 Tweet 15
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The Minderoo-Monaco Commission on Plastics and Human Health issues sweeping new report

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In