• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Novel drug prevents amyloid plaques, a hallmark of Alzheimer’s disease

Bioengineer by Bioengineer
March 2, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In animal models, the new compound modulated a key enzyme, reducing or eliminating production of problematic protein fragments; human clinical trials needed

IMAGE

Credit: National Institute of Aging

Amyloid plaques are pathological hallmarks of Alzheimer’s disease (AD) — clumps of misfolded proteins that accumulate in the brain, disrupting and killing neurons and resulting in the progressive cognitive impairment that is characteristic of the widespread neurological disorder.

In a new study, published March 2, 2021 in the Journal of Experimental Medicine (JEM), researchers at University of California San Diego School of Medicine, Massachusetts General Hospital and elsewhere have identified a new drug that could prevent AD by modulating, rather than inhibiting, a key enzyme involved in forming amyloid plaques.

In studies using rodents and monkeys, the researchers report the drug was found to be safe and effective, paving the way for possible clinical trials in humans.

“Alzheimer’s disease is an extraordinarily complex and multi-faceted condition that has, so far, defied effective treatment, let alone prevention,” said senior author Steven L. Wagner, PhD, professor in the Department of Neurosciences at UC San Diego School of Medicine. “Our findings suggest a potential therapy that might prevent one of the key elements of AD.”

Amyloid plaques are composed of small protein fragments called amyloid beta (Aβ) peptides. These peptides are generated by enzymes called β-secretase and γ-secretase, which sequentially cleave a protein called amyloid precursor protein on the surfaces of neurons to release Aβ fragments of varying lengths. Some of these fragments, such as Aβ42, are particularly prone to forming plaques, and their production is elevated in patients with mutations predisposing them to early-onset AD.

Several attempts have been made to treat or prevent AD using drugs that inhibit either β-secretase or γ-secretase, but many of these drugs have proved to be highly toxic or unsafe in humans, likely because β-secretase and γ-secretase are required to cleave additional proteins in the brain and other organs.

Instead, Wagner and colleagues investigated the therapeutic potential of drugs known as γ-secretase modulators or GSMs, which instead of inhibiting the γ-secretase enzyme, slightly alter its activity so that it produces fewer Aβ peptides that are prone to form plaques while continuing to duties cleaving other protein targets.

“GSMs offer the ability to mitigate mechanism-based toxicities associated with γ-secretase inhibitors,” said Wagner.

In the new JEM study, researchers created a novel GSM and tested it on mice, rats and macaques. They found that repeated, low doses of the GSM eliminated Aβ42 production in mice and rats, without causing any toxic side effects. The drug was also safe and effective in macaques, reducing Aβ42 levels by up to 70 percent.

The novel GSM was then tested in a mouse model of early-onset AD, treating the animals either before or shortly after they began to form amyloid plaques. In both cases, the novel GSM decreased plaque formation and reduced plaque-associated inflammation, which is thought to contribute to the development of disease.

The findings suggest that the novel GSM could be used prophylactically to prevent AD, write the authors, either in patients with genetic mutations that increase susceptibility to AD or in cases where amyloid plaques have been detected by brain scans.

“In this study, we have pharmacologically characterized a potent GSM that, based on its preclinical attributes, appears to equal or exceed the potency of any previously tested GSMs,” said co-author Rudolph Tanzi, PhD, professor neurology at Harvard Medical School and director of the Genetics and Aging Research Unit at Massachusetts General Hospital.

“Future clinical trials will determine whether this promising GSM is safe in humans and could be used to effectively treat or prevent Alzheimer’s disease.”

An estimated 5 million Americans are living with AD. The number of people with AD doubles every five years beyond age 65, according to the Centers for Disease Control, with the total number of Americans with the disease projected to nearly triple to 14 million by 2060. Currently, there is no known cure, only symptomatic therapies.

###

Co-authors include: Kevin D. Rynearson, Olga Prikhodko, Yuhuan Xie, Phuong Nguyen, Mariko Sawa, Ann Becker, Brian Spencer, Jazmin Florio, Michael Mante, Bahar Salehi, Carlos Arias, Douglas Galasko and William C. Mobley, all at UC San Diego; Robert A. Rissman and Brian P. Head, UC San Diego and Veterans Affairs San Diego Healthcare System; Moorthi Ponnusamy and Gopal Thinakaran, University of South Florida; Can Zhang, Massachusetts General Hospital; Brenda Hug, Veterans Affairs San Diego Healthcare System; Graham Johnson, NuPharmAdvise, New Hampshire; Jiunn H. Lin, Biopharm Consulting Partners, Pennsylvania; and Steven K. Duddy, Integrated Nonclinical Development Solutions.

Media Contact
Scott LaFee
[email protected]

Tags: AgingAlzheimerGerontologyMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Empowering Older Adults: Shared Decision-Making in Nursing

October 5, 2025

Boosting Malonylation Site Detection with AlphaFold2

October 5, 2025

Assessing Drug Interactions in Neonatal Care Software

October 5, 2025

Unveiling AGC2 Modulators through Advanced Assay Techniques

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Empowering Older Adults: Shared Decision-Making in Nursing

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

Boosting Malonylation Site Detection with AlphaFold2

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.