• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Novel Drosophila-based disease model to study human intellectual disability syndrome

Bioengineer by Bioengineer
September 29, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: TalTech

The researchers from the TalTech molecular neurobiology laboratory headed by professor Tõnis Timmusk used the fruit fly, Drosophila melanogaster to develop a novel disease model for Pitt-Hopkins syndrome (PTHS). Their study was reported in the July issue of Disease Models and Mechanisms.

The PTHS syndrome is caused by mutations in one of the two copies of the TCF4 gene. PTHS patients suffer from moderate to severe intellectual disability: they typically will never learn how to speak. They also have severly imparied motor skills, including delayed acquisition of walking capability. There are around 500 cases documented all around the world, but because of the symptomatic similarity with other intellectual disability syndromes (Angelman, Rett etc.), the PTHS could be underdiagnosed.

75% of human genes known to be associated with diseases have their corresponding genes in the fruit fly genome, making Drosophila a widely used experimental system for modeling human diseases. The Drosophila counterpart of TCF4 gene is known as daughterless (da).

Researcher of molecular neurobiology laboratory Mari Palgi explains: “When we genetically reduced the amount of da gene product specifically in the learning and memory center of the fly brain, the animals exhibited defects of associative memory. Namely, they had lost the ability to associate specific odors with food availability. In addition, the locomotor skills of these fruit flies were impaired as revealed by a test known as the climbing assay. Next we aimed to enhance the activity of da in the mutants flies to restore both their learning and locomotor abilities, i.e to rescue the defective phenotype.”

First author of Article Laura Tamberg says: “We fed the mutant flies two different substances that had been shown to enhance the activity of TCF4 in a cell culture-based assay. We found that these substances were able to enhance the learning ability of compromised animals. In the climbing assay, the compromised flies’ regained the ability to climb upwards following administration of one compound. The rescue effect was more pronounced in female flies probably since they eat more to reproduce and had thus consumed more of the substances – which had been delivered with food. ”

Mari Palgi adds: “These findings suggest that these two substances could be potentially helpful for PTHS patients. One of these, resveratrol, is a food supplement found in number of foodstuffs, such as red grapes and blueberries, and the other one, SAHA, is a drug already in clinical use for treatment of certain lymphomas.”

Besides PTHS, commonly occurring variants of TCF4 gene have been associated with other psychiatric diseases such as schizophrenia and bipolar disorder. The authors’ Drosophila model could be used to study certain aspects of these diseases by measuring the changes in endophenotypes such as prepulse inhibition.

In the future it is feasible to use this Drosophila model in combination with two straightforward behavioral tests – associative learning and negative geotaxis assays – to screen for additional therapeutics for their ability to enhance the activity of TCF4.

###

Source: Disease Models and Mechanisms 30.07.2020 https://dmm.biologists.org/content/13/7/dmm042747

Additional information: Researcher of TalTech Neurobiology Laboratory Mari Palgi, [email protected]

Kersti Vähi, TalTechi Research Communications Officer

Media Contact
Mari Palgi
[email protected]

Related Journal Article

http://dx.doi.org/10.1242/dmm.042747

Tags: Medicine/HealthPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Insights on Autistic Employees in Competitive Employment

October 19, 2025

Novice Nurses’ Role in Workplace Adaptation: Study Insights

October 19, 2025

Revealing Aging Changes in Renal Tubulointerstitium

October 19, 2025

Reversing Cellular Aging: PURPL RNA’s Epigenetic Breakthrough

October 19, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1262 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    290 shares
    Share 116 Tweet 73
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    124 shares
    Share 50 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Enhances Non-Invasive Sleep Stage Detection

Sex Differences in Energy Demand in Alzheimer’s Model

Antibody-Drug Conjugates Enhance Outcomes in Advanced Triple-Negative Breast Cancer Patients Unsuitable for Immune Checkpoint Inhibitors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.