• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Novel 3D printed stents deliver breakthrough treatment for oesophageal cancer

Bioengineer by Bioengineer
February 3, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UniSA

World-first 3D printed oesophageal stents developed by the University of South Australia could revolutionise the delivery of chemotherapy drugs to provide more accurate, effective and personalised treatment for patients with oesophageal cancer.

Fabricated from polyurethane filament and incorporating the chemotherapy drug 5-fluorouracil (5-FU), the new oesophageal stents are the first to contain active pharmaceutical ingredients within their matrix .

Their unique composition allows them to deliver up to 110 days of a sustained anti-cancer medication directly to the cancer site, restricting further tumour growth.

Importantly, the capabilities of 3D printing enabling rapid creation of individually tailored stents with patient-specific geometries and drug dosages.

PhD scholar, UniSA’s Paris Fouladian, says the new oesophageal stents could be a gamechanger for treating oesophageal cancer.

“Oesophageal cancer is often challenging to treat, with early diagnosis critical for positive outcomes,” Fouladian says.

“The most prominent symptom is dysphagia (difficulty swallowing food or drink) which is due to malignant cancer cells blocking the oesophagus.

“Blockages are commonly eased by an oesophageal stent – a small tube that is placed in the food pipe to keep it open – but these too can become obstructed by invading cancer cells.

“Our new drug-loaded oesophageal stents can help prevent further blockages by administering anti-cancer drugs directly to the tumour, limiting further growth while relieving the pressure of dysphagia.”

The new drug-loaded 3D printed oesophageal stents are stable to both UV and gamma sterilization processes.

Oesophageal cancer is the seventh most common cancer in the world, and the sixth highest cause of cancer deaths worldwide. Unless diagnosed early, prognosis remains poor with a five-year survival rate of around 20 per cent.

Senior researcher and Director of UniSA’s Pharmaceutical Innovation and Development Group, Professor Sanjay Garg, says the new technology is a significant breakthrough in modern drug delivery.

“3D printing processes that combine medicines and medical devices are on the precipice of changing the way we deliver medicines,” Prof Garg says.

“We’re now exploring the potential of 3D printing to design precise and individualised drug delivery systems.

“While more research is needed to further test the new drug-loaded 3D printed stents, we’re hopeful that this new technology will deliver positive outcomes for people with oesophageal cancer.”

###

Notes to editors:

  • Current statistics about oesophageal cancer are available at canceraustralia.gov.au and the World Cancer Research Fund
  • Published in Biomaterials Science the paper is available online: https://pubs.rsc.org/en/content/articlelanding/2020/bm/d0bm01355b#fn1

Media contact: Annabel Mansfield T: +61 8 8302 0351 M: +61 417 717 504

E: [email protected]

Researcher: Prof Sanjay Garg T: +61 8 8302 1575 M: +61 478 589 728 E: [email protected]

Media Contact
Annabel Mansfield
[email protected]

Original Source

https://www.unisa.edu.au/Media-Centre/Releases/2021/novel-3d-printed-stents-deliver-breakthrough–treatment-for-oesophageal-cancer/

Related Journal Article

http://dx.doi.org/10.1039/D0BM01355B

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringBiotechnologycancerChemistry/Physics/Materials SciencesMedicine/HealthPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025

Navigating Shadows: Treating Anorexia and C-PTSD

September 13, 2025

Preoperative BMI Influences Outcomes in Infective Endocarditis

September 13, 2025

Adverse Events in Asian Adults on Brivaracetam

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.