• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

No ‘clouded’ judgments: Geostationary satellite an alternative to monitor land surfaces

Bioengineer by Bioengineer
December 10, 2019
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers explain how a new meteorological satellite can be an option to monitor land surfaces and climate change

IMAGE

Credit: Tomoaki Miura and Kazuhito Ichii


Satellite remote sensing has widely been used to monitor and characterize the spatial and temporal changes of the Earth’s vegetative cover. Satellites used in these analyses have conventionally been polar-orbiting satellites, which orbit from “pole to pole” and obtain only one to two images of the Earth per day. The utility of these polar-orbiting satellites has, however, often been limited because frequently occurring clouds block their view of the land surface.

New-generation geostationary satellites present an opportunity to observe land surfaces in a more efficient manner. Being in geostationary orbit, the Advanced Himawari Imager (AHI) sensor onboard Himawari-8, for example, can obtain multi-band color images over Japan every 10 minutes, increasing the chance of obtaining “cloud-free” observations. In a new study published in Scientific Reports, an international team of researchers, including Tomoaki Miura from University of Hawaii, Shin Nagai and Mika Takeuchi from Japan Agency for Marine-Earth Science and Technology, Kazuhito Ichii from Chiba University, and Hiroki Yoshioka from Aichi Prefectural University, examined this possibility and the utility of Himawari-8 AHI geostationary satellite data for capturing seasonal vegetation changes in Central Japan.

Their study found that Himawari-8 AHI acquired approximately 26 times more observations than the Suomi-National Polar-orbiting Partnership (S- NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), one of the latest polar-orbiting satellite sensors, for the year 2016. As a result, there were a larger number of days with “cloud-free” observations with Himawari-8 AHI than with S-NPP VIIRS. The study has demonstrated that the AHI geostationary sensor obtained one cloud-free observation data every 4 days, whereas the VIIRS polar-orbiting sensor was able to obtain one cloud-free observation every 7 to 16 days. Owing to this larger number of cloud-free observations, AHI “vegetation index,” a satellite measure of vegetation greenness, captured the temporal changes of vegetation from leaf expansion to leaf fall continuously throughout the growing season, corresponding to the observed vegetation phenology with in situ time-lapse digital images (Figure 1). There were, however, several periods where even AHI was unable to obtain cloud-free observations due to persistent cloud cover during summer-fall seasons.

“Detailed vegetation seasonal information from the Himawari-8 geostationary satellite can be useful for many applications such as short- term drought monitoring and assessing the impact of heavy rainfall events,” said Prof Miura, the lead author of the study. “This study has shown that the Himawari-8 meteorological satellite can be used to monitor land surface and vegetation. With new-generation geostationary satellites, we may begin to see various types of vegetation changes that could not be seen with previous satellites. The new findings contribute to understanding land-atmosphere carbon dioxide budgets,” said Prof Ichii of Chiba University, a co-author of this study.

The Himawari-8 AHI geostationary satellite also acquires multi-band color images over the tropical Southeast Asia region every 10 minutes. It is expected that AHI geostationary sensor data would contribute to improving our understanding of vegetation dynamics and the effect of climate change in this cloud-prone tropical region.

###

Funding information

This study was supported partially by a Japan Society for the Promotion of Science (JSPS) Invitational Fellowship (ID no. L18554 Tomoaki Miura and Shin Nagai) and the Center for Environmental Remote Sensing (CEReS) Joint Research Program.

Contact

Saori Tanaka

Research Administrator for Communications

Institute for Global Prominent Research, Chiba University [email protected]

+81 (0)43 290 3022

Tomoaki Miura

Department of Natural Resources and Environmental Management, University of Hawai?i at Mānoa

Email: [email protected]

Media Contact
Saori Tanaka
[email protected]
81-043-290-3022

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-52076-x

Tags: Climate ChangeEarth ScienceEcology/EnvironmentForestryGeographyPlant SciencesSatellite Missions/ShuttlesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Embryonic Stem Cell Spheroids Enable Scaffold-Free Cartilage Engineering

August 13, 2025
Human Emissions Shape Recent North Pacific Climate

Human Emissions Shape Recent North Pacific Climate

August 13, 2025

Synaptic Loss and Connectivity Drops in Depressed PD Mice

August 13, 2025

Arginine-Infused Dentifrices Demonstrate Significant Reduction in Childhood Dental Caries

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Embryonic Stem Cell Spheroids Enable Scaffold-Free Cartilage Engineering

Human Emissions Shape Recent North Pacific Climate

Synaptic Loss and Connectivity Drops in Depressed PD Mice

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.