• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Nitrous oxide emissions set to rise in the Pacific Ocean

Bioengineer by Bioengineer
November 12, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © EPFL


Today’s rising CO2 emissions are changing oceans’ pH levels, making them more acidic. We can already see the harmful effects in the coral reefs. Yet other chemical processes – whose environmental impact is not fully known – are also being affected. A study published in the Proceedings of the National Academy of Sciences (PNAS) in 2011 suggested that ocean acidification is lowering the rate at which nitrous oxide (N2O), an ozone-depleting greenhouse gas (also known as laughing gas), is being produced naturally. Based on this study, it was thought that acidification decreases the natural production rate of N2O. However, new research conducted jointly by scientists at EPFL, Tokyo Institute of Technology and Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has discovered that the process appears to work the other way around, as well.

The research team took measurements in the Pacific Ocean, off the coast of Japan, between 2013 and 2016. They discovered that in the subarctic region of the Pacific – near Hokkaido and the Kuril Islands – the water’s lower pH is causing a significant increase in N2O production. Moreover, they concluded that if pH levels keep falling at the current rate, or 0.0051 units/year – assuming there is no decrease in CO2 emissions – the N2O production rate in that part of the Pacific could rise by 185% to 491% by 2100. And the greenhouse gas effect of N2O is 298 times greater than that of CO2. The study has just been published in Nature Climate Change.

The scientists collected samples at five different sites off the coast of Japan, from the subarctic region to the subtropical region. Then they lowered the samples’ pH levels, triggering the natural process whereby microbes in the water convert ammonium into nitrate, which generates N2O as a by-product. The samples showed a decrease in the ammonium-to-nitrate conversion rate, as in the PNAS study, but also an increase in N2O production. This difference may be due to the impact of pH on the biochemical mechanisms associated with N2O production.

“Our study provides additional proof that rising CO2 emissions are disrupting natural biogeochemical cycles, which are highly sensitive to changes in the environment. However, our conclusions are valid only for the part of the Pacific that we examined. Additional research is needed to see whether the same process is occurring in other parts of the world,” says Florian Breider, the study’s lead author and head of EPFL’s Central Environmental Laboratory (CEL).

Breider, who is a biogeochemist by training and a lecturer at EPFL, believes that by developing models of this process that take into account all environmental variables, scientists could obtain important information for orienting future research. And he suggests that the models address other compounds besides N2O, since many processes are still unknown. “Our study shows that under the right conditions, one greenhouse gas can increase the production of another, more damaging one. So it’s essential that we keep conducting research in this area,” says Breider.

###

Media Contact
Sandrine Perroud
[email protected]
41-216-932-222

Original Source

https://actu.epfl.ch/news/nitrous-oxide-emissions-set-to-rise-in-the-pacific/

Related Journal Article

http://dx.doi.org/10.1038/s41558-019-0605-7

Tags: Atmospheric ChemistryAtmospheric ScienceClimate ChangeClimate ScienceMarine/Freshwater BiologyOceanographyTemperature-Dependent Phenomena
Share14Tweet9Share3ShareShareShare2

Related Posts

blank

Ultrasound L-Lysine Boosts Pork Color Stability

August 5, 2025
blank

Effortless Weight Loss: Achieving Results Without Nausea

August 5, 2025

Safety Evaluation of Probiotic Pediococcus acidilactici Strains

August 5, 2025

Blastocystis Infection Linked to Colorectal Cancer

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasound L-Lysine Boosts Pork Color Stability

Algal Breakthrough: Researchers Develop Enhanced Blue Food Dye

Chronic Illness Links to Kids’ Play and Mental Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.