• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NIH-led team sets new bar in retinal imaging

Bioengineer by Bioengineer
March 11, 2021
in Science News
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By eliminating extraneous light, the scientists improved resolution by 33%

IMAGE

Credit: Johnny Tam, Ph.D., National Eye Institute

A team led by scientists at the National Eye Institute (NEI) has noninvasively visualized the light-sensing cells in the back of the eye, known as photoreceptors, in greater detail than ever before. Published in Optica, the researchers report how they improved imaging resolution by a third by selectively blocking the light used to image the eye. NEI is part of the National Institutes of Health.

The achievement is the latest in an evolving strategy to monitor cell changes in retinal tissue that, in turn, will help identify new ways to treat and prevent vision loss from diseases such as age-related macular degeneration, a leading cause of blindness in people age 65 and older.

“Better imaging resolution will enable better tracking of degenerative changes that occur in retinal tissue. The goal of our research is to discern disease-related changes at the cellular level over time, possibly enabling much earlier detection of disease,” said the study’s lead investigator, Johnny Tam, Ph.D., Stadtman Investigator in the Clinical and Translational Imaging Unit at NEI.

Earlier detection would make it possible to treat patients sooner, well before they’ve lost vision. What’s more, detecting cellular changes would enable clinicians to more quickly determine whether a new therapy is working.

The two types of photoreceptors, cones, which enable color vision, and rods, which enable low-light vision, vary in size and density across the retina. Cone photoreceptors, while larger than rods, are trickier to visualize when they’re more tightly packed together as they are in the fovea, the region of the retina responsible for the highest level of visual acuity and color discrimination. The entire landscape of cones and rods is referred to as the photoreceptor mosaic.

Advanced imaging systems are widely used for observing retinal tissue and are essential tools for diagnosing and studying retinal diseases. But even with adaptive optics retinal imaging, a technique that compensates for light distortions using deformable mirrors and computer-driven algorithms, there are still some areas of the photoreceptor mosaic that are challenging to image, according to the first author of the paper, Rongwen Lu, Ph.D., a postdoctoral fellow in the Clinical and Translational Imaging Unit at NEI.

“Sometimes rods are hard to image because they are so small,” Lu said. “By eliminating some of the light in the system, it actually makes it easier to see the rods. So in this case, less is more.”

In this latest report, Tam’s team at NEI, with help from researchers at Stanford University, Palo Alto, California, sought to push the resolution of adaptive optics retinal imaging further by strategically blocking some of the light to image the retina.

By blocking the light that illuminates the eye in the middle of the beam, to create a ring of light (rather than a disk), the NEI-led team improved the transverse resolution (across the mosaic). But that came at the expense of axial resolution (mosaic depth). To compensate, Tam’s team blocked the light coming back from the eye using a super small pinhole, called a sub-Airy disk, which recovers the axial resolution that would have been lost using the ring of light alone.

Combining the ring illumination with the sub-Airy disk imaging results in the best of both worlds, Tam said. The tweaked technique yields about a 33% increase in resolution, which makes it much easier to see rods, as well as subcellular details within cones.

Their technique also enhanced the visualization of the photoreceptor mosaic with another technique called non-confocal split-detection, which is yet another type of microscopy that provides a complementary view of the photoreceptor mosaic.

###

The work was supported in part by NEI grants U01 EY025477 and R01 EY025231, and by the Intramural Research Program at the NEI, part of the National Institutes of Health.

References:

Lu R, Aguilera N, Liu T, Liu J, Giannini JP, Li J, Bower AJ, Dubra A, Tam J. “In vivo sub-diffraction adaptive optics imaging of photoreceptors in the human eye with annular pupil illumination and sub-Airy detection,” published March 11, 2021, Optica.

NEI leads the federal government’s research on the visual system and eye diseases. NEI supports basic and clinical science programs to develop sight-saving treatments and address special needs of people with vision loss. For more information, visit https://www.nei.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit https://www.nih.gov/.

NIH…Turning Discovery Into Health®

Media Contact
Kathryn DeMott
[email protected]

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyMedicine/HealthOphthalmology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Zoonotic Intestinal Protozoa Found in Hebei Wildlife

November 15, 2025
Exploring Genetic Factors in Pain Post-Root Canal

Exploring Genetic Factors in Pain Post-Root Canal

November 15, 2025

Virally Delivered siRNA Targets MUC5AC to Combat Asthma

November 15, 2025

Autonomous Protein Presentation via Boolean Logic Gating

November 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Zoonotic Intestinal Protozoa Found in Hebei Wildlife

Exploring Genetic Factors in Pain Post-Root Canal

Virally Delivered siRNA Targets MUC5AC to Combat Asthma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.