• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Next generation of swimming biobots can self-train, showing striking speed and strength

Bioengineer by Bioengineer
April 22, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: IBEC

Robotics field aims at mimicking what natural biological entities have achieved throughout millennia of evolution – actions like moving, adapting to the environment, or sensing. Beyond traditional rigid robots, the field of soft robotics has recently emerged using compliant, flexible materials capable to adapt to their environment more efficiently than rigid ones. With this goal in mind, scientists have been working for years in the so-called biohybrid robots or biobots, generally composed of muscle tissue, either cardiac or skeletal, and an artificial scaffold, achieving crawling, grasping or swimming living robots. Unfortunately, current biobots were far to emulate the performance of natural entities in terms of mobility and strength.

Now, researchers at the Institute for Bioengineering of Catalonia (IBEC) led by ICREA Research Professor Samuel Sanchez have overcome both challenges and achieved a breakthrough in the field of biobots by using bioengineering tools. Sanchez and his colleagues at IBEC have applied 3D bioprinting and engineering design for the development of biobots at the cm. range that can swim and coast like fishes, with unprecedented velocities. The key: to use the spontaneous contraction of muscle cells-based materials with a very special compliant skeleton.

Self-training of IBEC Biobots through an engineered innovative skeleton:

While most of the researchers usually work with stiff or tethered scaffolds to prepare artificial robots, researchers at IBEC used biological robots based on a flexible serpentine spring made of a polymer called PDMS, which was designed and optimized via simulations and then printed using 3D-technology. The advantage of this innovative scaffold lies in the improved training and development of the tissue through mechanical self-stimulation upon spontaneous contractions, which creates a feedback loop due to the restoring force of the spring. This self-training event leads to enhanced actuation and larger contraction force in the biobot performance. Such serpentine springs have not been included before in a soft robotic living system.

“We bioengineered BIOBOTS composed of muscle cells that move like worms or fishes, react to electrical stimuli and exert surprising forces and velocities thanks to their self-training with the 3D printed soft skeleton.”, states Samuel Sanchez, ICREA Research Professor at IBEC.

IBEC Biobots swim at unprecedented speed and coast like fishes:

Besides the capacity to “self-train”, biohybrid swimmer based on skeletal muscle cells developed by IBEC researchers moved at speeds 791x faster than the reported skeletal muscle-based biobots up to date, and comparable with other cardiomyocyte-based bioswimmers (based on heart cells).

“The enhanced forces resulting from the self-stimulation process made ourf biobots design the fastest swimming biohybrid robot up to today by 791x”, explains Maria Guix, first author of the paper.

But these new biobots were also able to perform other movements: they were able to coast when placed near the bottom surface, resembling the swimming style of certain fish near surfaces, such as the burst-and-coast behavior of zebrafishes, characterized by sporadic bursts followed by coasting phases.

The work of Sanchez, Guix and colleagues at IBEC open the door to a new generation of stronger and faster biological robots based on muscle cells, of interest both for environmental and drug delivery purposes, but also for the development of bionic prosthetics. In the biomedical field, the possibility of printing such 3D muscle models with human muscles, offers the opportunity to use such highly functional devices for medical platforms for drug testing.

###

Media Contact
Guillermo Orts
[email protected]

Original Source

https://ibecbarcelona.eu/next-generation-of-swimming-living-robots-can-self-train-showing-striking-speed-and-strength/

Related Journal Article

http://dx.doi.org/10.1126/scirobotics.abe7577

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesNanotechnology/MicromachinesRobotry/Artificial Intelligence
Share12Tweet8Share2ShareShareShare2

Related Posts

Transforming Pesticide Residues into Plant Nutrients: A Breakthrough for Cleaner Soils and Healthier Crops

Transforming Pesticide Residues into Plant Nutrients: A Breakthrough for Cleaner Soils and Healthier Crops

September 24, 2025
blank

Elizabeth Hinde and Jorge Alegre-Cebollada Named Recipients of 2026 Michael and Kate Bárány Award

September 23, 2025

Revolutionary 3D-Printed Glass Emerging as a New Bone Substitute

September 23, 2025

DGIST Pioneers “Artificial Plant” Technology to Purify Radioactive Soil Using Only Sunlight

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biohybrids Leading the Way in Sustainable Chemical Synthesis at the Energy-Environment Intersection

Study Suggests Fat Distribution May Impact Cancer Risk

Transforming Pesticide Residues into Plant Nutrients: A Breakthrough for Cleaner Soils and Healthier Crops

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.