• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New way to control electrical charge in 2D materials: Put a flake on it

Bioengineer by Bioengineer
January 14, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: (Image courtesy Nano Letters)

Physicists at Washington University in St. Louis have discovered how to locally add electrical charge to an atomically thin graphene device by layering flakes of another thin material, alpha-RuCl3, on top of it.

A paper published in the journal Nano Letters describes the charge transfer process in detail. Gaining control of the flow of electrical current through atomically thin materials is important to potential future applications in photovoltaics or computing.

“In my field, where we study van der Waals heterostructures made by custom-stacking atomically thin materials together, we typically control charge by applying electric fields to the devices,” said Erik Henriksen, assistant professor of physics in Arts & Sciences and corresponding author of the new study, along with Ken Burch at Boston College. “But here it now appears we can just add layers of RuCl33. It soaks up a fixed amount of electrons, allowing us to make ‘permanent’ charge transfers that don’t require the external electric field.”

Jesse Balgley, a graduate student in Henriksen’s laboratory at Washington University, is second author of the study. Li Yang, professor of physics, and his graduate student Xiaobo Lu, also both at Washington University, helped with computational work and calculations, and are also co-authors.

Physicists who study condensed matter are intrigued by alpha-RuCl3 because they would like to exploit certain of its antiferromagnetic properties for quantum spin liquids.

In this new study, the scientists report that alpha-RuCl3 is able to transfer charge to several different types of materials — not just graphene, Henriksen’s personal favorite.

They also found that they only needed to place a single layer of alpha-RuCl3 on top of their devices to create and transfer charge. The process still works, even if the scientists slip a thin sheet of an electrically insulating material between the RuCl3 and the graphene.

“We can control how much charge flows in by varying the thickness of the insulator,” Henriksen said. “Also, we are able to physically and spatially separate the source of charge from where it goes — this is called modulation doping.”

Adding charge to a quantum spin liquid is one mechanism thought to underlie the physics of high-temperature superconductivity.

“Anytime you do this, it could get exciting,” Henriksen said. “And usually you have to add atoms to bulk materials, which causes lots of disorder. But here, the charge flows right in, no need to change the chemical structure, so it’s a ‘clean’ way to add charge.”

###

Read more in Nano Letters: Modulation Doping via a Two-Dimensional Atomic Crystalline Acceptor

Media Contact
Talia Ogliore
[email protected]

Original Source

https://source.wustl.edu/2021/01/new-way-to-control-electrical-charge-in-2d-materials-put-a-flake-on-it/

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.0c03493

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Eliminating microplastics in wastewater directly at the source

January 18, 2021
IMAGE

Where COVID-19 hit hardest, sudden deaths outside the hospital increased

January 18, 2021

Many parents say teens with anxiety, depression may benefit from peer confidants at school

January 18, 2021

Scientists shed light on how and why some people report “hearing the dead”

January 18, 2021
Next Post
IMAGE

Army scientists pick top 10 coolest advances of 2020

IMAGE

Stretching more effective than walking to lower high blood pressure: USask study

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer ScienceCell BiologycancerPublic HealthMaterialsClimate ChangeGeneticsEcology/EnvironmentMedicine/HealthBiologyInfectious/Emerging Diseases

Recent Posts

  • Eliminating microplastics in wastewater directly at the source
  • Where COVID-19 hit hardest, sudden deaths outside the hospital increased
  • Many parents say teens with anxiety, depression may benefit from peer confidants at school
  • Scientists shed light on how and why some people report “hearing the dead”
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In