• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New virtual screening strategy identifies existing drug that inhibits Covid-19 virus

Bioengineer by Bioengineer
December 31, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In lab experiments, pralatrexate outperforms remdesivir against SARS-CoV-2

IMAGE

Credit: National Institute of Allergy and Infectious Diseases/NIH, 2020 (CC0)

A novel computational drug screening strategy combined with lab experiments suggest that pralatrexate, a chemotherapy medication originally developed to treat lymphoma, could potentially be repurposed to treat Covid-19. Haiping Zhang of the Shenzhen Institutes of Advanced Technology in Shenzhen, China, and colleagues present these findings in the open-access journal PLOS Computational Biology.

With the Covid-19 pandemic causing illness and death worldwide, better treatments are urgently needed. One shortcut could be to repurpose existing drugs that were originally developed to treat other conditions. Computational methods can help identify such drugs by simulating how different drugs would interact with SARS-CoV-2, the virus that causes Covid-19.

To aid virtual screening of existing drugs, Zhang and colleagues combined multiple computational techniques that simulate drug-virus interactions from different, complimentary perspectives. They used this hybrid approach to screen 1,906 existing drugs for their potential ability to inhibit replication of SARS-CoV-2 by targeting a viral protein called RNA-dependent RNA polymerase (RdRP).

The novel screening approach identified four promising drugs, which were then tested against SARS-CoV-2 in lab experiments. Two of the drugs, pralatrexate and azithromycin, successfully inhibited replication of the virus. Further lab experiments showed that pralatrexate more strongly inhibited viral replication than did remdesivir, a drug that is currently used to treat some Covid-19 patients.

These findings suggest that pralatrexate could potentially be repurposed to treat Covid-19. However, this chemotherapy drug can prompt significant side effects and is used for people with terminal lymphoma, so immediate use for Covid-19 patients is not guaranteed. Still, the findings support the use of the new screening strategy to identify drugs that could be repurposed.

“We have demonstrated the value of our novel hybrid approach that combines deep-learning technologies with more traditional simulations of molecular dynamics,” Zhang says. He and his colleagues are now developing additional computational methods for generating novel molecular structures that could be developed into new drugs to treat Covid-19.

###

Peer-reviewed; Simulation/modelling

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology:
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008489

Citation: Zhang H, Yang Y, Li J, Wang M, Saravanan KM, Wei J, et al. (2020) A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro. PLoS Comput Biol 16(12): e1008489.
https://doi.org/10.1371/journal.pcbi.1008489

Funding: This work was partly supported by the National Key Research and Development Program of China under Grant No. 2018YFB0204403 (Y.W.) and 2019YFA0906100 (X.W.); Strategic Priority CAS Project XDB38000000 to Y.W., National Science and Technology Major Project under Grant No. 2018ZX10101004 (Y.Y.), National Science Foundation of China under Grant no. U1813203 (Y.W.); the National Natural Youth Science Foundation of China (Grant no. 31601028: Y.P.); the Shenzhen Basic Research Fund under Grant no. JCYJ20190807170801656 (J.L.), JCYJ20180507182818013 (Y.W.), JCYJ20170413093358429 (Y.W.), and the SIAT Innovation Program for Excellent Young Researchers (J.L.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: No authors have competing interests.

Media Contact
Yanjie Wei?
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pcbi.1008489

Tags: Algorithms/ModelsInfectious/Emerging DiseasesMathematics/StatisticsMedicine/HealthPublic Health
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

NIH Grant Fuels George Mason Researcher’s Advances in AI Storytelling for Dementia Care

October 28, 2025

Enhanced Adenine Base Editing with Hybrid Guide RNAs

October 28, 2025

Unraveling Neurodegeneration: The Gut-Brain-Immune Connection Explored

October 28, 2025

Post-COVID Nasal Cells Altered by TNFα, TGFβ

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1288 shares
    Share 514 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Capacitive Performance of Eu-Doped NiCo2O4 Nanoflowers

Engineers Develop Innovative Hydrogels to Track Bodily Activity

NIH Grant Fuels George Mason Researcher’s Advances in AI Storytelling for Dementia Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.