• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 27, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New understanding of how proteins operate

Bioengineer by Bioengineer
November 5, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Centenary Institute

A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

The key finding-the changing state of a protein’s structural bonds-is likely to have significant implications as to how proteins are targeted by medical researchers, particularly in terms of drug development and the fight against disease.

Proteins are responsible for all of life’s processes and had previously been considered to exist in an intact single state when mature. The new study however has found two human proteins involved in blood clotting and immunity existing in different and changing states.

“The most sophisticated molecules made in nature are proteins which consist of unique sequences of amino acids,” said Dr Diego Butera from the ACRF Centenary Cancer Research Centre and lead author of the study. “Disulphide bonds link the amino acid chains together and were thought to just stabilise protein structure.”

Previously it has been believed that these disulphide bonds were fully formed in the mature and functional protein. In this study however, the researchers found that the proteins are being produced in multiple disulphide-bonded states.

“We were able to precisely measure whether the disulphide bonds in the blood proteins were formed or broken. Remarkably, we saw that the proteins were made in multiple, possibly thousands, of different disulphide-bonded states,” said Dr Butera.

Professor Philip Hogg, Head of the ACRF Centenary Cancer Research Centre and senior author of the study believes that their research will change how proteins are viewed and targeted in future drug and medical experiments.

“It’s very likely that we will find many other proteins that exist in multiple states. Crucially, a drug may bind more or less preferentially to different states, impacting the effectiveness of the drug.”

“In experimental settings, differing states of a protein should now be considered as part of the investigative medical research process,” Professor Hogg said.

###

The study was published in the prestigious science journal ‘Nature Communications‘.

Publication:

Fibrinogen function achieved through multiple covalent states.
https://www.nature.com/articles/s41467-020-19295-7

Image:

Professor Philip Hogg and Dr Diego Butera

https://drive.google.com/file/d/17LvajedFgJ6F0SbxMgJyb7nqoTiKMbC5/view?usp=sharing

For all media and interview enquiries, please contact

Tony Crawshaw, Media and Communications Manager, Centenary Institute on 0402 770 403 or email: [email protected]

About the Centenary Institute

The Centenary Institute is a world-leading independent medical research institute, closely affiliated to the University of Sydney and the Royal Prince Alfred Hospital. Our research focuses on three key areas: cancer, inflammation and cardiovascular disease. Our strength lies in uncovering disease mechanisms and applying this knowledge to improve diagnostics and treatments for patients.

For more information about the Centenary Institute, visit http://www.centenary.org.au

Media Contact
Tony Crawshaw
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19295-7

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UTA researcher explores effects of trauma at the cellular, tissue levels of the brain

February 26, 2021
IMAGE

Picture books can boost physical activity for youth with autism

February 26, 2021

Oahu marine protected areas offer limited protection of coral reef herbivorous fishes

February 26, 2021

Sensing robot healthcare helpers being developed at SFU

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In