• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 3, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New tumor test could guide personalized treatment for children with cancer

Bioengineer by Bioengineer
January 23, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the University of British Columbia and BC Children’s Hospital are the first in Canada to use a new test for pediatric tumour analysis that may one day guide personalized treatments for children with cancer.

Working with researchers at Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, the team analyzed 28 childhood tumour samples from nine cancer types archived in the BC Children’s Hospital Biobank.

They found that the pediatric cancer-focused test found more genetic mutations per sample compared with tests used to analyze adult cancers, and better identified weaknesses that can potentially be targeted with drugs.

From extracting DNA from cancer cells, to sequencing and analyzing a sample, the whole process ideally takes two to three days in the lab. The new technology allows genes of interest to be amplified and can provide results for up to 16 patients in one week. At the end, researchers have a list of possible drugs that may target the pediatric cancer cells.

“Pediatric cancers are often very aggressive, so doing these types of tests need to be very fast,” said lead author Amanda Lorentzian, a UBC graduate student. “Using targeted sequencing allows for a fast turnaround time and a simple workflow. It has a lot of potential to inform better treatment options for pediatric patients.”

The results are part of Lorentzian’s work with Chris Maxwell and Philipp Lange, co-senior study authors, in an innovative field of cancer treatment research called precision oncology. Similar tests have been designed for adult cancers, but childhood cancers require a unique approach since different tissues are affected and fewer drugs are safe for treating children.

“This test uses DNA sequencing technology to look at thousands of specific regions in the tumour’s genome and identify changes or mutations in those areas,” said Maxwell, an associate professor in UBC’s department of pediatrics and investigator with the Michael Cuccione Childhood Cancer Research Program at BC Children’s Hospital.

Currently, most children diagnosed with cancer receive treatment and survive. For many cancer types there is greater than an 80 per cent cure rate, but the possibility of relapse is always looming.

“Because cure rates drop dramatically for children that suffer a cancer relapse, we hope this new technology may identify more targeted treatments,” said Lange, an assistant professor in UBC’s department of pathology and laboratory medicine, Canada Research Chair in Translational Proteomics of Pediatric Malignancies, and investigator with the Michael Cuccione Childhood Cancer Research Program at BC Children’s Hospital. “In addition, we are thinking of ways that we can use this technology in a more proactive way to study the child’s cancer early and prepare for a disease relapse prior to its occurrence.”

While proactive treatment plans are still years in the future following clinical trials, this study is the first step toward a personalized standard of care for childhood cancer patients.

###

The research was published in the Journal of the National Cancer Institute (JNCI) Cancer Spectrum. Funding was provided by the Michael Cuccione Childhood Cancer Foundation as part of the BRAvE Initiative at BC Children’s Hospital and supported by Team4Hope.

Media Contact
Reyhana Heatherington
[email protected]
604-827-3140

Tags: cancerMedicine/HealthPediatrics
Share12Tweet8Share2ShareShareShare2

Related Posts

Derazantinib Boosts Gemcitabine by Blocking MUC5AC

December 30, 2025

FOCUS Study Reveals Insights on Melphalan for Uveal Melanoma

December 29, 2025

Black Grape Anthocyanins Boost 5-FU Cancer Therapy

December 29, 2025

Girdin Silencing Boosts Mebendazole’s Ovarian Cancer Fight

December 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    118 shares
    Share 47 Tweet 30
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping Arginine Reactivity Across the Human Proteome

Engineered Co-Signaling Receptors Enhance T Cell Precision

Non-Coding RNAs: Impact on Lipid Metabolism and Atherosclerosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.