• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New therapeutic target for depression identified

Bioengineer by Bioengineer
May 22, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers of the University of Malaga demonstrate that a fragment of the brain molecule ‘Galanin’ is involved in anhedonia, the loss of the capacity to feel pleasure in daily activities

Credit: University of Malaga

Depression is one of the most widespread disorders that affects society, according to the World Health Organization. In fact, it is estimated that 4 million people are affected in Spain.

There are different pharmacological treatments for depression, mainly therapies that act on the serotonin system -the so-called SSRIs (selective serotonin reuptake inhibitors). However, it has been evidenced that these antidepressants take around two weeks to have an effect and, what’s more, around 30% of patients are resistant to this drug.

Researchers of the Department of Human Physiology of the UMA Faculty of Medicine have taken a step closer to a new therapeutic target to face this mental disorder.

Particularly, the group of “Neurochemistry of the Transmission in the Central Nervous System”, co-directed by Professor Zaida Díaz-Cabiale, has evidenced that a fragment of the “Galanin” neuropeptide -an endogenous molecule of the brain- is involved in anhedonia, which is the loss of the capacity to feel pleasure in daily activities, for instance, meals, social activity or sex, and, thus, one of the main symptoms in depressed patients.

These researchers have demonstrated for the first time the role of “GAL (1-15)” in the brain reward system of an animal model.

“We have verified through different experiments how animals modify their response to high-reinforcement appetitive stimuli, such as saccharine or sexual attraction, after the administration of the Galanin fragment”, explains researcher Carmelo Millón, one of the authors of this study, published in Journal of Psychopharmacology.

Furthermore, in this article, in which a researcher of Karolinska Institute (Sweden) has participated, they have analyzed the brain reinforcement system at a molecular level, the circuit in charge of reinforcing positive behavior for individuals and species, and reaffirmed that the Galanin fragment acts directly on this neurological mechanism, reducing the circuit activity.

According to Millón, describing this fragment is essential to modulate the brain reward circuit, having interesting applications that go beyond treatments for depression, such as its possible use in drug-related addictions. “The understanding of these mechanisms opens the way for endless therapeutic strategies, hence its importance”, he says.

The research group of “Neurochemistry of the Transmission in the Central Nervous System” has been studying the Galanin molecule for more than two decades, originally in cardiovascular regulation. Its role in neuropsychiatric diseases, such as depression or anxiety, started to be investigated in the UMA in 2007.

###

Reference:

Millón C, Flores-Burgess A, Gago B, Alén F, Orio L, García-Durán L, Narváez JA, Fuxe K, Santín L, Díaz-Cabiale Z. Role of the galanin N-terminal fragment (1-15) in anhedonia: Involvement of the dopaminergic mesolimbic system. J Psychopharmacol. 2019 May 13:269881119844188. doi: 10.1177/0269881119844188.

Media Contact
Maria Guerrero
[email protected]

Related Journal Article

http://dx.doi.org/10.1177/0269881119844188

Tags: AddictionMedicine/HealthneurobiologyToxicology
Share13Tweet8Share2ShareShareShare2

Related Posts

Human Emissions Shape Recent North Pacific Climate

Human Emissions Shape Recent North Pacific Climate

August 13, 2025
Synaptic Loss and Connectivity Drops in Depressed PD Mice

Synaptic Loss and Connectivity Drops in Depressed PD Mice

August 13, 2025

Arginine-Infused Dentifrices Demonstrate Significant Reduction in Childhood Dental Caries

August 13, 2025

Author Correction: New Analysis Clarifies Parkinson’s Trial Benefits

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Relocating to Walkable Cities Boosts Residents’ Walking Habits, Study Reveals

Embryonic Stem Cell Spheroids Enable Scaffold-Free Cartilage Engineering

Human Emissions Shape Recent North Pacific Climate

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.