• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New technique tracks individual protein movement on live cells

Bioengineer by Bioengineer
February 18, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New microscopy method allows researchers to follow individual molecules over long periods of time as they move along and inside live cells

IMAGE

Credit: Drawing depicting the landscape of a cell surface with a gold nanoparticle tracing courtesy of Richard Taylor.


SAN DIEGO, CA – The piece of gold that Richard Taylor was thrilled to track down weighed less than a single bacterium. Taylor, a postdoctoral fellow at the Max Planck Institute, was working to follow individual nanogold-labeled molecules that move just nanometers, billionths of a meter. The resulting microscopy technique, developed under Professor Vahid Sandoghdar and colleagues, can follow proteins at microsecond speeds for long periods and will be presented today at the 64th Annual Meeting at the Biophysical Society in San Diego, California.

The microscope you may have used in high school biology is known as a brightfield microscope–it’s the simplest microscopy technique. Light is transmitted through the sample and the magnifying lens, and you see the variations in density in the sample. But, if you’re working to increase the sensitivity and see something smaller, brightfield reflects and scatters light, so some microscopy techniques add filters to eliminate the light scattering. Instead, Taylor and colleagues decided to take advantage of that scattered light. The light waves, reflected from the brightfield and scattered by gold particles used to label proteins, interfere with each other and the research team developed computational techniques to separate the desired signal from the rest. The method has been named interferometric scattering (iSCAT) microscopy.

“It’s very sensitive, you can localize proteins very cleanly and precisely in three dimensions,” Taylor explained. Compared to new microscopy techniques that create stunning images of cells, Taylor says, “ours is not quite as exotic, it is really a simple concept, the beauty is its simplicity.” And unlike fluorescence microscopy, whose signal degrades over time, gold particles can be followed indefinitely.

For the first test of the technique, Taylor and colleagues looked at gold-labeled proteins in solution. Then to try it in live cells, they chose a well-studied protein called epidermal growth factor receptor (EGFR), so they could confirm that their measurements were in line with all that was already known about the protein. Taylor says when he and his colleagues, who were all physicists, started looking at living cells, “we weren’t ready for the amazing things we were about to see.”

The dynamics of EGFR in cells astounded them and their biology collaborators–they watched as the protein diffused across the membrane, found its way into tapering membrane projections, and sank into pits to be internalized by the cell. Taylor said it reminded him of a “nano-rover” mapping the cell surface like a NASA vehicle on Mars. The movements that the computer tracked over long periods looked a bit like furious scribbles in two dimensions, but in three dimensions they resembled land topography.

EGFR is the only protein they’ve tracked so far, but in theory, they could track any cell surface protein, and may be able to track proteins within cells too. “The cell will scatter the signal, but that depends on the kind of cell, and where in the cell you’re looking,” Taylor said. They can also combine iSCAT with live cell fluorescence microscopy, which allows them to follow single proteins while also visualizing cell parts that might be influencing the way the proteins move, like the cell’s scaffolding.

Taylor is excited to have the technique applied to other proteins, “we encourage scientists to use this microscopy–pick the protein you want to follow, and we’ll show you how.” He’ll tell you exactly where to find your own tiny gold.

###

Media Contact
Leann Fox
[email protected]
202-256-1417

Original Source

https://www.biophysics.org/news-room?ArtMID=802&ArticleID=9141&preview=true

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyGeneticsMedicine/HealthNanotechnology/MicromachinesResearchers/Scientists/Awards
Share12Tweet8Share2ShareShareShare2

Related Posts

Groundbreaking Genomic Test Forecasts Hormone Therapy Benefits in Recurrent Prostate Cancer Treatment

September 28, 2025

Insights into Day Program Treatment for Anorexia Caregivers

September 28, 2025

Key Insights on End-of-Life Communication in Nursing

September 28, 2025

Unveiling Cacna1e Splice Variants’ Functional Diversity

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Groundbreaking Genomic Test Forecasts Hormone Therapy Benefits in Recurrent Prostate Cancer Treatment

Insights into Day Program Treatment for Anorexia Caregivers

Key Insights on End-of-Life Communication in Nursing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.