• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New study takes first step toward treating endometriosis

Bioengineer by Bioengineer
November 1, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHICAGO — Researchers at Northwestern Medicine have taken the first step in bioengineering the human uterus to treat endometriosis, uterine-factor infertility and endometrial cancer.

The study is the first to demonstrate that induced human pluripotent stem (iPS) cells can be reprogrammed to become healthy uterine cells for potential placement in the uterus. Made from a person's own readily available cells, iPS cells can potentially be manipulated to fix defects within other, disease-causing cells. The healthy cells are then optimal for an auto-transplant that won't be rejected by the person's immune system.

The study will be published Nov. 1 in the journal Stem Cell Reports.

Endometrium is the inner lining of the uterus. Endometriosis, caused by backward menstruation of abnormal endometrial cells onto the lower abdominal organs, is a painful and persistent gynecological disease that affects approximately 10 percent of women of reproductive age worldwide (about 200 million women). It has no effective long-term treatment and, in some cases, the disease can serve as a precursor to ovarian cancer.

Women with abnormal endometrial cells may experience infertility because these defective endometrial cells are not receptive to an implanting embryo. This study opened the avenue for replacing these defective endometrial cells with normal ones derived from a woman's own skin or blood.

"This is huge. We've opened the door to treating endometriosis," said senior author Dr. Serdar Bulun, who has been researching treatments for endometriosis for the past 25 years. "These women with endometriosis start suffering from the disease at a very early age, so we end up seeing young high school girls getting addicted to opioids, which totally destroys their academic potential and social lives."

Bulun is the chair of the department of obstetrics and gynecology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine physician.

Endometriosis occurs when the endometrial cells in a woman's uterus do not respond to an adequate amount of an implantation hormone called progesterone. The abnormal cells, called defective endometrial stromal fibroblasts, travel through the fallopian tubes, then onto the lower abdominal tissues and the ovaries. Extra-uterine growth of endometrium-like tissue results in severe pelvic pain, infertility and development of adhesions and increases the risk for ovarian cancer.

Now that this study has demonstrated that these cells can be reproduced and respond properly to progesterone, the next step would be to replace the diseased cells in the uterus with these newly programmed, healthy uterine cells, Bulun said.

As cell-based therapy methods continue to improve, the defective cells that cause inflammation and pain in the uterine cavity of endometriosis patients would be replaced with the normally programmed cells in the future. This way, pain would be eliminated long-term. Moreover, the newly formed normal endometrium would be more receptive to an implanting embryo.

"One day we hope to make a whole uterus using this cell-based treatment employing the patient's own iPS cells," Bulun said.

Uterine transplantation has been tried, but the biggest obstacle to success has been the rejection of someone else's uterus with the patient's immune response. This problem could be solved if a whole uterus can be bioengineered by populating a scaffold with the patient's own iPS cells reprogrammed to form a uterus. However, this is a long shot, Bulun warns.

Dr. Kaoru Miyazaki at Northwestern conducted the key experiments for this study. Both Bulun and Miyazaki consulted closely with their co-author, Dr. Tetsuo Maruyama from Keio University in Tokyo, Japan.

###

Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health funded this study by extending grant HD38691 to Bulun.

Media Contact

Kristin Samuelson
[email protected]
847-491-4888
@northwesternu

http://www.northwestern.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Direct Thoracic Duct Access Cures Neonatal Chylothorax

October 2, 2025

Comorbidities Impact Radiotherapy in Elderly Glioma

October 2, 2025

Generative AI Surpasses Nature in Designing Proteins for Genome Editing

October 2, 2025

Experts Advocate for a Ban on Commercial Sunbeds in the UK

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Individual Models Shape IPCC Climate Mitigation Findings

Pathogenic Variants Identify Prostate Cancer Genes in African Men

Direct Thoracic Duct Access Cures Neonatal Chylothorax

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.