• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study presents efficient, solution-processed, hybrid tandem solar cells

Bioengineer by Bioengineer
March 12, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UNIST


Colloidal quantum dot (CQD) solar cells have attracted considerable attention due to the advantages of being flexible and lightweight. Besides, they are much easier to manufacture, compared with that of commercial silicon solar cells in use today. A novel technology, capable of maximizing the performance of the existing CQD solar cells has been developed, recently.

A research team, led by Professor Sung-Yeon Jang in the School of Energy and Chemical Engineering at UNIST has developed high?efficiency, solution?processed, hybrid series, tandem photovoltaic devices featuring CQDs and organic bulk heterojunction (BHJ) photoactive materials. The absorption of the organic back?cell effectively compensated the optical loss in the CQD front?cell, which improved the overall photon harvesting.

Quantum dots (QDs) are semiconductor particles with sizes smaller than a few nanometres. As they display interesting phenomena, such as size dependent emission wavelength, the absorption spectra of the solar cell can be quite changeable. In other words, the advantage of QDs is that it shows light absorption in the near-infrared (NIR) region, which other photoactive layers cannot. However, there are some ares in the NIR region where light absorption does not occur, even with QDs.

In the work, researchers developed high-efficiency CQD/organic hybrid series tandem photovoltaic devices, featuring CQDs and organic BHJs as photoactive materials to compensate for the external quantum efficiency (EQE) loss in the NIR region. The NIR?absorbing organic BHJ devices were employed as the back sub?cells to harvest the transmitted NIR photons from the CQD front sub?cells.

In addition, the team optimized the short?circuit current density balance of each sub?cell, and thus created a near ideal series connection using an intermediate layer to achieve a power conversion efficiency (PCE) that is superior to that of each single?junction device. Indeed, the PCE (12.82% ) of the hybrid tandem device was the highest among the reported CQDPVs, including single?junction devices and tandem devices, according to the research team. Besides, researchers also noted that “This study suggests a potential route to improve the performance of CQDPVs by proper hybridization with NIR?absorbing photoactive materials.”

Furthermore, the new hybrid tandem solar cells are manufactured at room temperature and use a solution process for easy manufacturing. As a result, this solar cell is affordable, more economical, and having less cost as compared to silicon solar cells. Their lower manufacturing costs also gives them a clear advantage mass production.

“The hybrid tandem device exhibited almost negligible degradation after air storage for 3 months,” says Professor Jang. “Moreover, this study suggested the potential to achieve PCE > 15% in hybrid tandem devices by reduction of energy loss in CQDPVs and enhancement of NIR absorption in OPVs.”

###

The findings of this research have been published in the prestigious journal, Advanced Energy Materials on January 13, 2020. It has been supported by the National Research Foundation (NRF) and the Korean Energy Technology Evaluation and Planning (KETEP).

Media Contact
JooHyeon Heo
[email protected]
82-522-171-223

Original Source

https://news.unist.ac.kr/new-study-presents-efficient-solution%e2%80%90processed-hybrid-tandem-solar-cells/

Related Journal Article

http://dx.doi.org/10.1002/aenm.201903294

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsResearch/DevelopmentTechnology Transfer
Share12Tweet8Share2ShareShareShare2

Related Posts

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Influenza Outcomes in Youth: Pre- vs. Post-COVID

Neonatal Neuroplasticity: Linking Brain Science to Care

Urban-Rural Gaps in Perceived Quality of Aging Services

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.