• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New SDSU study examines role of sea urchins on California kelp

Bioengineer by Bioengineer
March 14, 2019
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The new research provides valuable information to understand and protect California’s quintessential kelp forests

SAN DIEGO, Calif. (March 14, 2019) – California sheephead and spiny lobsters may be helping control sea urchin populations in Southern California kelp forests, where sea otters — a top urchin predator — have long been missing, according to a new San Diego State University (SDSU) study published in the journal Ecology. The research provides new insight into the complex predator-prey relationships in kelp forests that can be seen in the absence of sea otters.

The study is also the first to experimentally test the relative impact, or rate of feeding, of the California sheephead and spiny lobsters in comparison to sea otters, whose historical range spanned from British Columbia, Canada to Baja California, Mexico.

“Healthy kelp forests are important both economically and ecologically along our coast. They act as nurseries and vital habitat for valuable fishery species, recreation sites for kayakers, free divers, and scuba divers, and serve as the base of rocky reef food webs,” says Robert Dunn, who led the study as a Ph.D. candidate at SDSU and University of California, Davis, funded by a NMFS-California Sea Grant Fellowship.

Kelp forests rely on the proper balance of herbivory and predation. Sea urchins dwell on the seafloor where they forage on macroalgae, including giant kelp. If their populations are left unchecked by predation, they can decimate kelp forests and prevent kelp from growing. That can transform a thriving community of kelp into an oceanic desert, known as an urchin barren.

The relationships between predators and prey vary among communities. Sea urchins have recently decimated kelp forests in Northern California, leaving researchers to wonder why Southern California kelp forests have remained relatively intact without sea otters to control the urchin populations.

Past research has indicated that Marine Protected Areas in Southern California house a diversity of predators — warranting fewer urchins and abundant kelp. Dunn and his SDSU graduate advisor, Kevin Hovel, set out to better understand the potential for top-down control by these two distinct predators: the California sheephead and spiny lobsters.

“One of the main things to note about Robert’s research is that he was able to experimentally control, for one of the first times, many factors that allow us to test whether or not these predators have the right amount of influence, whether they can eat fast enough, and if there are enough of these predators within the ecosystem to exert strong influences on sea urchins,” says Hovel, a professor of biology at the Coastal and Marine Institute at SDSU.

The new findings are in line with concurrent international research. Dunn said another recent study in southern Australia “found comparable results that predators and disease seem to be able to control urchins up to a certain density, similar to the number we found, but once urchins get to really high densities, those two factors no longer regulate urchin populations. Since our results are in line with findings on other rocky reefs, we believe this to be solid evidence indicating our results are robust.”

The new research provides valuable information to understand and protect California’s quintessential kelp forests. The researchers note, however, that further research is needed to tease out the complex relationships between sea urchins and their predators.

“These results shed light on a very nuanced relationship, that requires further research on rocky reefs around the globe,” says Dunn. “At the same time, we are already experiencing effects from global climate change, which will have additional consequences for these important ecosystems.”

Throughout his fellowship experience, Dunn has connected with National Marine Fisheries Service (NMFS) researchers and collaborators at UC Davis to follow up on this work utilizing a modeling approach to assess what happens in the absence of fishing for lobsters and urchins in kelp forests. Dunn recently started a postdoctoral position with Hovel at SDSU to build on the reported research, assessing spiny lobster demographic rates, food web positions, and genetic population structure, also with California Sea Grant funded support.

###

About California Sea Grant

NOAA’s California Sea Grant College Program funds marine research, education and outreach throughout California. Our headquarters is at Scripps Institution of Oceanography, University of California, San Diego; we are one of 33 Sea Grant programs in the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce.

About San Diego State University

San Diego State University is a major public research institution that provides transformative experiences, both inside and outside of the classroom, for its more than 36,000 students. The university offers bachelor’s degrees in 95 areas, master’s degrees in 78 areas and doctorates in 22 areas. Students participate in research, international experiences, sustainability and entrepreneurship initiatives, internships and mentoring, and a broad range of student life and leadership opportunities. The university’s rich campus life features opportunities for students to participate in, and engage with, the creative and performing arts, a Division I athletics program and the vibrant cultural life of the San Diego region. For more information, visit http://www.sdsu.edu.

Media Contact
Cory Marshall
[email protected]
http://dx.doi.org/10.1002/ecy.2625

Tags: BiologyClimate ChangeClimate ScienceFisheries/AquacultureMarine/Freshwater Biology
Share13Tweet7Share2ShareShareShare1

Related Posts

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025

Root N-Hydroxypipecolic Acid Circuit Boosts Arabidopsis Immunity

July 26, 2025

Single-Cell Screens Reveal Ebola Infection Regulators

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.