• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 1, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New research to enhance air filtering in ambulances

Bioengineer by Bioengineer
February 4, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Cranfield University

Cranfield University is working with Q-Flo, Cambridge University and NHS England to record experimental airflow data from a modern NHS ambulance under different driving conditions.

Collection of the data, which is being funded by the Royal Academy of Engineering, will explore the effective installation of filtration units which are able to remove virus molecules, including COVID-19 aerosols.

Professor Helen Atkinson CBE, FREng, Pro-Vice-Chancellor – Aerospace, Transport and Manufacturing at Cranfield University, who is overseeing the project, said: “We’re very pleased to be able to support the Royal Academy of Engineering’s Engineering X Pandemic Preparedness scheme along with our project partners Q-Flo, Cambridge University and NHS England.

“There are currently nearly 30,000 paramedics in the UK and thousands of ambulances nationwide. Airflow patterns inside ambulances are complex and not well documented – mapping these flows will enable the optimised installation of filtration systems and reduce the potential exposure of NHS ambulance crews to COVID-19 aerosols in their vehicles.”

Phil Pimlott MBE, Assistant Director Operations South Central Ambulance NHS Foundation Trust (SCAS) and Chair of the UK National Strategic Ambulance Fleet Group (NSAFG), said: “SCAS, on behalf of the NSAFG, is very pleased and excited to be involved with this project and is fully committed to working with the group in an area that has been a challenge for ambulance services and the NHS for numerous years.

“The success of this project will be extremely positive for the patients we carry and care for as well as assisting our ambulance crews across the UK and potentially the world in delivering the highest care they can give to patients.”

The project will provide flow maps from the ambulance interior over a range of driving conditions up to 70 mph. COVID-19 aerosol sizes, that can be inhaled, are generally less than 10 microns in diameter and particles of this size tend to follow flow patterns without settling onto surfaces.

Dr Adam Boies, Reader in the Department of Engineering at the University of Cambridge and partnership director in the Aerosol Centre for Doctoral Training, said: “Effective filtration strategies for PM10 particles are increasingly seen to return environments to safe levels of operation following viral release whereby suspended particles that remain after droplet drying may remain indefinitely without dilution or active removal.”

The flow data will facilitate the integration of an active virus filter (AVF) system – TorStranTM – developed by Q-Flo Ltd, which takes in contaminated air and captures individual virus molecules, including those contained in airborne droplets, then destroys the virus molecules and returns clean air to the environment.

Martin Pick, Chief Operating Officer of Q-Flo, said: “The collaboration with Cranfield has been positive and perfectly timed. The TorStran™ Activer Virus Filter will help to keep people safe, reducing the risk of infection, but it is critically important that we understand where to position the unit to ensure maximum effectiveness.”

Knowledge of the flow field is key to allowing Q-Flo to effectively integrate their filtration system into NHS ambulances. The current filtration design is at an advanced phase, meaning a significant roll out of the product could occur in the next 12 months.

Work to collect the data is already underway and a flexible mounting system has been fitted inside an ambulance interior for the light source and imaging system. Calibration and testing of the flow visualisation system in a stationary and moving ambulance has already begun, enabling the acquisition of image datasets from selected regions of the vehicle.

Cranfield’s Multi-User Environment for Autonomous Vehicle Innovation (MUEAVI) – a ‘smart’ road test environment, which is a first of its kind in the UK, built alongside a research airport within the controlled setting of a university campus – is being used in the research for instrumentation testing and data capture at low speeds with an emergency 999 ambulance provided by SCAS.

Data from the project will be openly published, allowing other vehicle designers to improve their ventilation systems.

The project is also expected to lead to other larger projects, such as modelling of airflows in vehicles using computational fluid dynamics, leading to greater refinement of vehicle filtration systems.

The approach will also aid cabin design and provide leverage for further work to measure and model flows in other significant transport systems, such as buses, aircraft and trains, where COVID-19 infection still presents known risk. Any future pandemic will also benefit from the knowledge gained in this research.

###

Media Contact
Miranda Stockford
[email protected]

Original Source

https://www.cranfield.ac.uk/press/news-2021/new-research-to-enhance-air-filtering-in-ambulances

Tags: BacteriologyBiomedical/Environmental/Chemical EngineeringInfectious/Emerging DiseasesPollution/RemediationTechnology/Engineering/Computer ScienceVehicles
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Princeton lab profiles histone mutational landscape of human cancers

March 1, 2021
IMAGE

Genetic study uncovers hidden pieces of?eye disease?puzzle?

March 1, 2021

Story tips: Quantum building blocks, high-pressure diamonds, wildfire ecology and more

March 1, 2021

Behavior of wild capuchin monkeys can be identified by marks left on their tools

March 1, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    650 shares
    Share 260 Tweet 163
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsEcology/EnvironmentcancerClimate ChangePublic HealthTechnology/Engineering/Computer ScienceChemistry/Physics/Materials SciencesInfectious/Emerging DiseasesMedicine/HealthCell BiologyBiologyGenetics

Recent Posts

  • Princeton lab profiles histone mutational landscape of human cancers
  • Genetic study uncovers hidden pieces of?eye disease?puzzle?
  • Story tips: Quantum building blocks, high-pressure diamonds, wildfire ecology and more
  • Behavior of wild capuchin monkeys can be identified by marks left on their tools
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In